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In 1981 Bunimovich and Sinai established the statistical properties of the planar 
periodic Lorentz gas with finite horizon. Our aim is to extend their theory to the 
multidimensional Lorentz gas. In that case the Markov partitions of the 
Bunimovich-Sinai type, the main tool of their theory, are not available. We use 
a crude approximation to such partitions, which we call Markov sieves. Their 
construction in many dimensions is essentially different from that in two dimen- 
sions; it requires more routine calculations and intricate arguments. We try to 
avoid technical details and outline the construction of the Markov sieves in 
mostly qualitative, heuristic terms, hoping to carry out our plan in full detail 
elsewhere. Modulo that construction, our proofs are conclusive. In the end, we 
obtain a stretched-exponential bound for the decay of correlations, the central 
limit theorem, and Donsker's Invariance Principle for multidimensional periodic 
Lorentz gases with finite horizon. 

KEY WORDS: Hyperbolic dynamical systems; periodic Lorentz gas; decay 
of correlations; Brownian motion. 

1. INTRODUCTION 

So far  on ly  a few m o d e l s  a re  k n o w n  in m a t h e m a t i c a l  phys ics  t h a t  exh ib i t  

n o n t r i v i a l  o r  even  r ich  c h a o t i c  b e h a v i o r  and ,  a t  the  s a m e  t ime,  h a v e  been  

s t ud i ed  wi th  m a t h e m a t i c a l  r igor .  O n e  of  t hose  m o d e l s  is the  p l a n a r  pe r iod ic  

L o r e n t z  gas  for  wh ich  the  t h e o r y  of  b i l l i a rd - type  d y n a m i c a l  sys tems  works .  

T h e  e rgod ic i t y  a n d  K - p r o p e r t y  of  t h a t  m o d e l  were p r o v e n  by  Sinai  in 

19701161 a n d  its B - p r o p e r t y  was  p r o v e n  by  G a l l a v o t t i  a n d  O r n s t e i n  in 

1974. I1~ A deep  e x p l o r a t i o n  of  its s ta t i s t i ca l  p r o p e r t i e s  was  d o n e  m u c h  
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later, in 1981, by Bunimovich and Sinai 16~ and recently their techniques 
were improved in ref. 7. From the physical point of view, however, the 
planar gas is not quite realistic--recall that originally H. Lorentz intro- 
duced his model in 1905 to describe an electronic gas in metals. As for 
the Lorentz gas in three and higher dimensions, only its ergodicity and 
K-property were established by Sinai and the present author in 1987. c~7~ 
The present paper is devoted to the statistical properties of the multidimen- 
sional Lorentz gas. We obtain here the same properties for that model as 
were established for the planar gas in refs. 6 and 7. 

The periodic Lorentz gas is a dynamical system generated by the free 
motion of a point particle in the d-dimensional space R d, d>~2, which 
collides elastically with fixed scatterers situated in space periodically. 
As usual, we suppose the speed of the particle to be one and the scatterers 
to be disjoint and strictly convex with smooth (at least of class C 3) 
boundaries whose sectional curvature is uniformly bounded away from 0 
and oo. 

Assumption A ( Fini te  h o r i z o n ) .  The time of free motion between 
scatterers is uniformly bounded above. 

By projecting the particle trajectory down to a suitable d-dimensional 
torus Tor  d we can get a dynamical system with a compact phase space 
denoted by ~01 = Q x S d- t, where Q is the torus Tor  d with a finite number 
of scatterers removed from it and S a - '  is the unit sphere, the space of 
the velocity vectors. The projection of the motion of our particle down 
to Q generates a flow { ~ '}  on 9J/with a continuous time t. This is a so- 
called semidispersing billiard system. It preserves the Liouville measure 
dla = c~, dq dr, where dq and dv are simply the Lebesgue measures in Q and 
S a- 1, respectively, and c, is a normalizing factor. 

A discrete-time version of a billiard dynamics is usually constructed by 
a cross section of the phase space defined as M =  { x =  (q, v)e~lR: q 6 d Q ,  
(v, n(q))>1 0}, where n(q) is the inward unit normal vector to 0Q at q, and 
(., .) stands for the scalar product. So, M consists of all the unit vectors 
attached to the boundary 0Q and pointing inside Q (outside the scatterers). 
At each x e M  we denote z(x) the first positive time of reflection of the 
trajectory starting at x, and T x = S ~ t ~ + ~  then specifies the first return 
map T: M ~  M. The map T preserves the measure dv = c,.(v, n(q)) dv dq, 
which is obtained by the projection of the Liouville measure d/~ onto M 
(c,. is again a normalizing factor). Both the map T and the flow { ~ '}  are 
known to be ergodic, mixing, and enjoy the K-property. 1~71 We will only 
work with the discrete-time system (T, M, v). 

For the precise statement of our results we introduce the classes of 
H61der continuous (HC) and piecewise H61der continuous (PHC) functions 
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on M. An HC function fsatisfies the condition I f ( x ) - f ( y ) l  ~ C( f )  IIx-Yll p 
for some fl > 0 (the H61der exponent). A PHC function is a function which 
is HC on a finite union of subdomains in M separated by a finite number 
of compact smooth hypersurfaces. For example, T(x) and T(T-Ix)  are both 
PHC functions. 

All four theorems formulated below are proven here under Assump- 
tion A and one more, technical, Assumption B (see section 2). The 
situation when Assumption A fails is discussed briefly in Section 7. 

Theorem 1.1 (Decay  of correlat ions).  Let f(x) and g(x) be 
two HC or PHC functions on M. Then 

I<(fo  T"). g )  - ( f ) ( g ) [  <~c(f, g) ~'/~ (1.1) 

where c(f, g ) > 0  depends on f,  g and ~ < 1  is determined by the con- 
figuration of scatterers and the class of HC or PHC function under 
consideration. 

Here and further on ( - )  denotes the expectation with respect to the 
invariant measure v. 

Theorem 1.2 (Central  l imit theorem) .  
HC or a PHC function with ( f ) = 0 .  Then the quantity 

a z =  ~ ( ( f o T " ) - f )  
t l  = - - ~  

is finite and nonnegative. If a :~ 0, then the sequence 

f ( x ) +  f ( T x ) +  ... + f ( T " - I x )  
(~2n)'/2 

converges in distribution to the standard normal law as n -* ~ .  

Again, let f ( x )  be an 

(1.2) 

(1.3) 

Remark (see, e.g., ref. 11). The sum (1.2) equals zero if and only if 
the function f ( x )  is a coboundary one, i.e., f ( x ) = g ( T x ) - g ( x )  a.e. for 
another function g ~ Lz( M, v ). 

Next, we lift the dynamics back up to the space •a from Q. The 
moving particle starts somewhere in the unit cube [0, 1 ]d and then travels 
in R d colliding with an infinite array of scatterers. Denote by q(t) its posi- 
tion in space at time t and by q,, the point of the nth reflection. The starting 
position q(0) (or qo) is selected randomly according to the probability 
measure/~ (resp., v). 
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Theorem 1.3 (Limit  distr ibution of the displacement vec- 
tor ) .  The vectors 

q ( t ) - q ( 0 )  and q , , -  q0 
w/~ w//- ~ (1.4) 

both converge in distribution to d-dimensional nondegenerate normal laws 
with zero means. 

The covariance matrices Vj and V2 of two normal distributions 
involved in Theorem 1.3 are known as diffusion matrices. The latter can be 
expressed by the (discrete-time) Green-Kubo formula 

' i V2 2(z(x)> ,,= ( (q '  - q ~ 1 7 4  (q"+ ' - q"))  (1.5) 
- - c r  

Here ( q j - q o )  r is a column vector and (q, ,+~-q,)  is a row vector, so that 
their (tensor) product is a d• d matrix. The convergence of the infinite 
series in (1.5) is assured by Theorem 1.1. A continuous-time Green-Kubo  
formula for V~ can be also written down, but we are unable to prove it 
because of a lack of necessary bounds on the decay of correlations for the 
flow { 'e'}. 

The next theorem requires a certain space-time rescaling. For every 
s t  [0, 1 ] and t >  0 we denote q , (s )= q(st)/v/~. The measure/a induces the 
probability distribution /~, on the set of all possible trajectories q,(s), 
0~<s~< 1, which are then considered as points in the space Cto. j l (~ a) of 
continuous vector functions on [-0, 1 ]. 

Theorem 1.4 (Convergence to the Brownian mot ion) .  The 
measure p, converges weakly to a Wiener measure. 

The planar versions of Theorems 1.1-1.4 were first proven by 
Bunimovich and Sinai in 1981.16) Their proofs were based on the Markov 
partitions of the space M constructed in their previous paper in 1980. ~s) 
Those partitions were used to approximate the dynamical system (T, M, v) 
by probabilistic Markov chains with sufficiently strong ergodic and mixing 
properties. After that certain classical methods from probability theory 
were applied to derive Theorems 1.1-1.4. 

Unfortunately, a direct extension of that approach to the case d~> 3 
fails due to the absence of suitable Markov partitions. The problems with 
"nonsmooth boundaries" specific formultidimensional hyperbolic systems 
were first described by Bowen in 1978. (4) So far they have prevented "explicit" 
constructions of Markov partitions for multidimensional billiards in the 
spirit of refs. 3 and 5. In a recent paper by Krfiger and Troubetzkoy 4j4) 
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a somewhat different (in a sense, "implicit") construction of a Markov 
partition for an abstract nonuniformly hyperbolic system, very close to 
the Lorentz gas, was presented. That partition is not ready to use for the 
study of the statistical properties of the system. It is hoped that it can be 
improved and applied to billiards, but a realization of that program might 
require hard work. 

Our proofs of Theorems 1,1-1.4 bypass Markov partitions. We only 
use a finite approximation to those partitions, which is, in a sense, very 
crude. We call it a Markov sieve, since it does not even cover the phase 
space M. A tiny subset of positive (but small enough) measure is left out. 
Such an approach has been developed in ref. 7, where the planar versions 
of Theorems 1.1-1.3 were reproven and also extended to semidispersing 
billiards and stadia. In a sense, that approach is more straightforward than 
the one used in the original work~'(5,6) and its techniques are simpler. After 
all, the original approach spanned two full articles, which we accomplish in 
one. 

The paper is organized as follows. Section 2 contains the necessary 
background of the theory of hyperbolic billiards. In Section 3 we extend the 
notions of homogeneous stable and unstable manifolds and parallelograms 
introduced in ref. 7 for planar billiards to the multidimensional case. In 
Section 4 we prove two basic lemmas on the evolution of the homogeneous 
manifolds. In Section 5 we construct Markov sieves. Section 6 contains the 
proofs of Theorems 1.1-1.4. 

A final remark. We work with a billiard system, and so the complete 
proofs of our theorems inevitably invoke intricate and very specific techni- 
ques of the theory of billiards. However, our principal ideas are very 
general and no doubt can work for other multidimensional nonuniformly 
hyperbolic systems, including attractors. In order to make our ideas and 
arguments easy to understand for the general reader, nonexpert in billiards, 
we remove the billiard-related technical proofs from the main text and 
place them in the Appendix. We also try to give emphasis to intuitive, 
heuristic explanations and descriptions. The last remark especially pertains 
to Section 5, where the existence of Markov sieves is demonstrated 
qualitatively rather than proved rigorously. 

2. PRELIMINARIES 

There have been fairly many papers on billiards published in the past 
two decades. By now that theory has been sufficiently far developed so that 
we can effectively use its machinery while avoiding long and tedious 
calculations typical for early works on this topic. In this section we briefly 
introduce general well-known facts. 

822/74!1-2-2 
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The map T and its inverse T-1 are piecewise smooth. Their discon- 
tinuities are made up by the trajectories tangent to OQ. Denote 
So = OM= {x = (q, v)~ M: (v, n(q))= 0 } and S~ = T~So for every integer i. 
Then S ,, is the singularity set for T", nd:0. For m < n  denote 
S ..... =Sm w ... w S,. Obviously, all the powers of T are continuous on a 
subset Me= M \ S  . . . .  . For each m>~ 1 the set S . . . . .  consists of a finite 
number of smooth compact hypersurfaces in M with boundaries. 

Assumption B (Nonaccumulation property of singularities). 
The number of smooth components of S ... . . .  meeting at any point x ~ M  
does not exceed a constant Ko independent of m. 

This assumption holds for generic configurations of scatterers. It is 
true, for instance, if any trajectory undergoes at most a fixed number of 
tangent reflections. Assumptions of that kind have been usually made in 
the literature; see, e.g., refs. 5-7. 

The map T is hyperbolic since all the scatterers are strictly convex. 
The hyperbolicity means that at every point x e Mc the tangent space J..,.M 
is decomposed as E.~E~,., each of E.'~ "s being a (d-1)-dimensional  
subspace. This decomposition is DT-invariant, i.e., DTE.~'s= E'~:.~ at every 
x e Me. The space E.~ corresponds to all the positive Lyapunov exponents, 
while E~ corresponds to the negative ones. 

A convenient description of the subspaces E.~ ,~, x = (q, v) r M, through 
certain curvature operators has been worked out in nearly all the previous 
papers on billiards. Take a point x ~ M  and any (d-1)-dimensional  
submanifolds F'~'~(x) in M passing through x and tangent to E~,? . Each of 
those manifolds generates a bundle of trajectories in the domain Q outgo- 
ing from OQ and another bundle incoming to OQ. The curvature operator 
of the orthogonal cross section of the outgoing bunch is denoted by : ~ " ( x )  
and that of the incoming one is denoted by ~"9(x). The operators ~ ( x )  
act in the ( d -  1)-dimensional subspace Jx ~ R d orthogonal to the outgoing 
velocity vector v, and ,~S(x )  act in the hyperplane Jx_ orthogonal to the 
incoming velocity vector v = v - 2 ( v ,  n(q))n(q). All those operators are 
self-conjugate, the ~ + ( x )  are positive definite, and the _ ~ s  (x) are 

- • 

positive definite, too. In other words, the bundles of trajectories generated 
by E~ are convex (diverging), and those generated by E~ are concave 
(converging). 

There are simple equations governing the evolution of the above 
operators under the action of T. Let x = (q, v) ~ M,.. First, 

:~S( Tx) = : ~ ( x )  . (I+ z(x) :~_~(x) )-1 (2.1) 



Periodic Lorentz Gas 17 

Here and further I denotes the identity operator. Second, 

gg'~S(x) = ~ ( x )  + K(x), where K(x) = 2(v, n(q)) V*(x) Ko(q) V(x) 
(2.2) 

Here Ko(q) ~s the curvature operator of the boundary surface dQ at q, and 
V* and V are two projection operators: V is a projection of the hyperplane 
Jx onto a hyperplane orthogonal to n(q) along the vector v, and V* is a 
projection of the latter back to the former, but now along the vector n(q). 
The spaces Jx and J~_ can be identified by an isometric projection along 
the normal vector n(q), and we assumed that identification in (2.1). 
Combining (2.1) and (2.2), we can express ~'~S(x) as operator-valued 
continued fractions (see Appendix), but we never use those expressions in 
the main text. 

From (2.1) and (2.2) one can conclude that the eigenvalues of ~'"_(x) 
and - ~ + ( x )  are uniformly bounded away from 0 and ~ .  But two other 
operators, ~'~_(x) and - ~ _ ( x ) ,  may have one very large eigenvalue, 
roughly proportional to (v, n(q))-J, which will cause a lot of trouble in our 
calculations. 

It turns out that natural distances in E~. 's induced by the Riemannian 
structures in the phase spaces 9J/ and M are no good for studying the 
action of DT, since those spaces are not monotonically expanded or con- 
tracted. In order to get monotonicity, we Use another coordinate system in 
E~. "s induced by the Riemannian structure of the orthogonal cross section 
to the bundles of trajectories in Q generated by these subspaces (it can be 
taken either just before the reflection at the point x or after it, the result 
is the same). In that coordinate system the derivative DT of the map T acts 
on E.~ 's as 

OTIs., = I+ "c(x) ~ ( x )  (2.3) 

As a result, one gets that E.~ is expanded by DT in every direction with the 
factor (rate) uniformly bounded away from 1. The same is true for the con- 
traction of E.~. In what follows we refer to these properties of T as simply 
expansion and contraction. Note that there are presumably no upper 
bounds on the rates of expansion and contraction, since one eigenvalue of 
~ . ( x )  and ~ _ ( T x )  may be arbitrarily large. 

u,  $ Some technical remarks. The spaces E x , as well as the operators 
~ S ( x ) ,  depend continuously on the point x ~  M c. The angles between E.~ 
and E.~ in ~-~M (now taken in the Riemannian structure in M) are 
uniformly bounded away from 0. The angles between the hypersurfaces S,,, 
m/> 0, and E.~, x E S,,, are uniformly bounded away from 0 (this is proven 
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in the Appendix). On the contrary, the angles between S .... m/> 0, and E ' ,  
x E S .... uniformly tend to zero as m--* ~ .  

The Katok-Strelcyn theory tt2~ ensures the existence of local stable and 
unstable manifolds (LUMs and LSMs for brevity) 7"(x) and ~,S(x) passing 
through a.e. point x ~ Me. Those LUMs and LSMs are tangent to E~ and 
E~, respectively. Those manifolds have finite sizes (they are compact) due 
to the discontinuities of both T and T- I .  The "unnatural" metric in E~. 's 
introduced in (2.3) also induces a special metric in ~'~ which is used 
throughout this paper unless otherwise specified. We call it the p-metric. It 
induces a Riemann measure (volume) in LUMs and LSMs, which we also 
denote by p. 

An important property of the LUMs and LSMs in billiards is their 
absolute continuity. It is described in terms of a canonical isomorphism. 
For any two LUMs ),~ and ),~ sufficiently close to each other, the canonical 
isomorphism is defined as a map which takes a point xeT] '  to the point 
),~(x) n),~ (provided the latter exists). A dual map is defined for any two 
close LSMs Y].2. These maps are absolutely continuous with respect to the 
natural Riemannian measure in );,;.s.(16,13) This property is termed the 
absolute continuity of the LUMs and LSMs. For two points x, y ~ M we 
denote I-x, y ]  --- 7~(x) c~ ),"(y). For two subsets A, B c M  we denote 
[A, B] = {[x, y]:x~A, y~B}. For an LUM )," and a subset A we denote 
~ , ] = y " n A ,  and we call the set {xe7":y~(x)nA#f~} the canonical 
projection of A onto ~,". 

3. PARALLELOGRAMS 

Our principal goal in this section is to extend the notions of 
homogeneous LUMs, LSMs, and parallelograms elaborated in errs. 7 and 
8 for a planar gas to the multidimensional case. All the necessary proofs are 
provided in the Appendix. 

A parallelogram is a subset A c M such that for every pair x, y ~ A 
a point z =  Ix, y ]  exists and also belongs in A. Alternatively, A =  
[Y](Xo), y~(Xo)] for every point xor Parallelograms are often called 
rectangles, but we intentionally follow the terminology of refs. 5-8. 

Next, we fix a point x o ~ A, and let B c A be a subparallelogram. We 
denote by F ]  and F~  the canonical projections of B onto y"(Xo) and 
),S(xo), respectively. Hence, B =  [F~ ,  F~] .  Note that Xo need not belong in 
B. If the parallelogram B is an infinitesimal one, its measure can be 
evaluated as 

v(B)=c,..det(~'+(x)-~+(x)).J"(x).J'(x).p(F'~).p(F~s) (3.1) 
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for x sB. Here the J""(x) stand for the Jacobians of the canonical 
isomorphisms from y] ' (x )  onto F ] "  at x. This is a generalization of a 
formula established for planar billiards in ref. 7. The proof of (3.1) is given 
in the Appendix, Section A1. 

Now, for an arbitrary subparallelogram B e A one can easily set up an 
integral formula 

f ( 
t I1 v(B) = c,, ~r /dp(y)  jrl'B dp(z), de (~  + (x) - ~% (x)) .  J"(.r). SS(x) (3.2) 

where y E F~ and z e F~ are specified by [y, z] = x, and both integrals are 
taken with respect to the p-measures in ?"'S(Xo). 

Next, we fix two numbers So ~ (0, 1 ) and Co > 0. A parallelogram A is 
said to be weakly n-homogeneous, n >/0, if 

and 

Idet(~'+(x)-~+(x))/det(~'+(y)-dS+(y))- 11 ~< Cost (3.3) 

IJ""~(x) - 11 ~< Cost (3.4) 

for every x, yEA and every Xo e A determining J"'"(x). The main property 
of a weakly n-homogeneous parallelogram A is that the measure of any 
subparallelogram B c A can be approximated by 

v.(B)=c,,.det(~'+(Xo)-~%(Xo)).p(F~).p(F'n) (3.5) 

with an exponentially small error: 

Ivo(B)/v(B)- 1[ <~ C~sg (3.6) 

v(BJBI) [ 
I ~  1 ~<Czs ~ (3.7) 

with some C2 = C2(so, Co) provided A is an n-homogeneous parallelogram. 
The construction of weakly homogeneous parallelograms is technically 

very close to that for two-dimensional billiards. (71 First, we fix a 0 > 1 and 
no >t 1 and denote by @o the infinite union of hypersurfaces in M defined by 

with some CI = C~(so, Co). 
An important consequence of (3.5)-(3.6) is the following Markovian 

approximation formula. A subparallelogram B c A is said to be u-inscribed 
(or s-inscribed) in A (refs. 5, 7) if y](x) = y](x)  [resp., y~(x) = 7~(x)] for 
every x~A riB, If BI is u-inscribed in A and Bz is s-inscribed in A, then 
one has 
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(v,n(q))=n -~ for all integers n>~no. These hypersurfaces divide the 
neighborhood of So = OM into an infinite number of thin layers, the closer 
to So the thinner. An LUM (respectively, an LSM) is said to be 
homogeneous (we refer to them as HLUM and HLSM for brevity) if it and 
all its images under T" for n < 0 (resp., for n > 0) do not cross the set ~o- 
An LUM y" (an LSM y~) is said to be n-homogeneous, n >/0, if T"V u (resp., 
T-"~, s) is a homogeneous LUM (LSM). The main reason to introduce 
homogeneous LUMs and LSMs is that they provide an efficient control on 
the largest eigenvalue of the operators K(x), ~ ( x )  and ~ _ ( x ) .  Recall that 
this eigenvalue is roughly proportional to (v, n(q))-~. 

A parallelogram A is said to be n-homogeneous, n >/0, if for every 
point x~A  the sets ~,]'S(x) belong in the same HLUM or, respectively, 
HLSM. It turns out that n-homogeneous parallelograms are always weakly 
n-homogeneous with the constants ~o and Co in (3.3)-(3.4) determined by 
0 and n o above. Besides, n-homogeneous LUMs have another important 
property: for every pair of points x, y in such an LUM 

IA"k(T-Kx)/A~(T-ky)- 11 ~< Co=g (3.8) 

for every k>~ 1, where A~(T-kx) stands for the local rate of expansion of 
the p volume in V"(T-kx) by T k at the point T-kx. A dual estimate to (3.8) 
holds for LSMs. 

The proofs of (3.3), (3.4), and (3.8) are fairly long. They are carried 
out in the Appendix, Section A2. 

We also need some relatively simple properties of homogeneous 
LUMs and LSMs listed below. Their proofs are outlined in the Appendix, 
Section A3. 

For a.e. point x ~ M and every n/> 0 there are n-homogeneous LUMs 
and LSMs passing through x. The maximal smooth components of the 
HLUMs and HLSMs passing through x are denoted by ~,~ and y~ 
respectively. 

Remark. Any nonhomogeneous LUM may contain many (possibly, 
infinitely many) HLUMs inside it. Those HLUMs are separated by the 
images of the set ~o intersecting the original LUM. We claim that those 
images cannot accumulate near any interior point of V"(x) for a.e. x e M. 
[That is, they can accumulate only at 07U(x).] 

For any x ~ M we denote by r"(x) and rS(x) the distances of x from 
Oy~ and Oy~ respectively. The following estimate holds for any e > 0 
and some fl > 0: 

v{x: r"(x) < ~ or r~(x) < e} ~< const, e t~ (3.9) 
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The bound (3.9) The bound (3.9) results from another important estimate. 
Given a subset A ~ M, we denote by U,(A) the so-called e-neighborhood 
of A in the p-metric, i.e., the union of all the stable and unstable manifolds 
of size ...<e intersecting A. Then, for some fl~ >0,  one has 

v(U,(S_,., U~o) )~e  ~, (3.10) 

4. E V O L U T I O N  L E M M A S  

Here we prove two basic lemmas on the evolution of HLUMs and 
HLSMs in M under the transformation T. We discuss only HLUMs, but 
dual statements hold for HLSMs in the reverse dynamics. 

Let ~," be an HLUM and P0 denote the normalized pvolume 
(p measure) in ~". The image T"y" consists of a finite or countable number 
of HLUMs called components. At each point x e T"y ~ we denote by r , (x)  
the distance of that point from the boundary of the component of T"7" 
containing x [of course, the distance is measured in the p metric defined by 
(2.3)]. Denote r~aX(x)=maxo<~,<.<u{r,(T"x)} for xe) ,"  and 

?" = -f~u In r,,(T"x) dpo(X ) 

The smaller is y", the larger is the value fo takes. The evolution of a small 
HLUM under the action of T is determined by two competitive processes. 
One of them is the expansion which forces the values r , (x)  to grow 
exponentially fast in n or, equivalently, pushes ?,, down by a positive 
amount at each step. The other process is the splitting of T"y ~ into shorter 
HLUMs when it intersects S 1 or ~o, which pushes the mean values ~,, up 
again. The next lemma states that the first process is more powerful, so that 
typical components of T"~," will grow in size exponentially fast in n until 
they reach a certain order of magnitude determined simply by the geometry 
of the space M. 

Lemma 4.1 (Expans ion) .  There are a constant D > 0  and a 

function fl(c) such that fl(c) - ,  0 as c--* oo, and for any HLUM )," one has 

Po{Xey~: r ~ ( x )  >~ D } >1 1 -- fl(c) 

with N = [c?o]. 
In other words, during the first N ~ const. ~o iterates of T the points 

of )," appearing at least once in large (of size >~D) components of the 
images of the HLUM yu form a "fat" subset of that HLUM. 

The proof of a similar lemma for the planar gas 17) (see also ref. 8) is 
short and gives even more than stated here. It gives a good estimate for the 
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function fl(c), which decays exponentially fast as c ~ ~ .  But that proof 
does not work in the multidimensional case. We outline here another 
proof, which works in any dimension, but is rather long and gives a much 
weaker estimate for ~(c). 

Consider a function F,(x)= - I n  r,(T"x) on ~u. The sequence {F,(x)} 
equipped with the probability measure Po can be treated as a discrete-time 
random process. The expectation with respect to the measure Po is denoted 
by <. )o, so that ?, = <F,,(x)> 0. 

If the discontinuities did not affect the evolution of 7", the function 
F,,(x) would decrease by at least a positive amount fo > 0 at each iterate of 
T at each point xEV u due to the uniform expansion on HLUMs.  In such 
a case Lemma 4.1 would have followed immediately. 

The key point in our arguments is that the splitups of the images of 
y" when they cross S_1 or ~o do not prevent the function F,(x) from a 
rapid decrease for typical points x ~ ~,~. First we consider the splitups by 
S_1 alone. Assumption B implies that for each m >/1 there is an ~,,> 0 
such that every H L U M  of size ~<~,, intersects no more than Ko smooth 
components of S_,,.o. Thus, T"  cuts any sufficiently small H L U M  along 
no more than K 0 smooth surfaces. That cutting certainly boosts the 
function F,(x), but one can bound its "average" increment. The crude idea 
is that since the number of cutting surfaces is uniformly bounded (~<Ko), 
the total "damage" must be bounded, too. 

We now give a precise estimate. Let a component ~ of T"V" have a 
size ~<e,, and be broken by S_,,,o into several subcomponents. For each 
x e v ~  denote by r',(x) the p distance of x from the boundary of the sub- 
component where x belongs. Let <. )1 denote the conditional expectation 
over the H L U M  T-"y~ c 7 u equipped with the Po measure [i.e., <F(x))1 = 
<F(x)>o/Po(T-"v~) for any function F(x) on T-"7~]. 

S u b l e m m a  4.1a. < - I n  r',(T"x))l <~ <F,,(x)>t + f l ,  where the 
constant f t  > 0 is independent of ~" or m. 

Sublemma 4.1a is proven in the Appendix. 
For large m the difference./'2 = mfo-  fl  is positive. Therefore, the com- 

bined effect of the expansion and splitting at m subsequent iterates of T is 
always a decrease of the average value of the function F,,. Obviously, this 
is an advantage in our arguments. 

We now turn to the splitting of the components caused by the hyper- 
surfaces in ~o. Those can break any component down into an arbitrary 
large or even infinite number of subcomponents. Hence the above 
arguments no longer work, and we need a different approach. The situation 
can be the fact that the rate of expansion of LUMs rapidly grows in the 
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neighborhood of So. Roughly speaking, the pieces of a component V~ of 
T"V u broken by ~0 become large enough at the very next step and the effect 
of expansion outweighs the effect of splitting. Again, let 7~ be small enough 
(<~e,,) and ( . ) 1  denote the conditional expectation over T-"V~ c ~,". 

S u b l e m m a  4.1b.  ( F , + l ( x ) ) l ~ ( F , , ( x ) ) l - f 3  with a constant 
f3 > 0 independent of ~,". 

Sublemma 4.1b is proven in the Appendix, Section A.4. 
We now complete the proof of Lemma 4.1. We consider an evolution 

of the HLUM ~," under T subject to a special "stopping rule." The reason 
why we introduce such a rule is that when a component of T"~," becomes 
large enough and contains some points y with rn(y ) > D, then such points 
have already "reached the goal" [recall the definition of r~aX(x)] and we 
do not need to iterate them any further. Precisely, we define the stopping 
rule as follows. Whenever a component ~,'~ of T"~" contains a nonempty 
subset ) 1.o- { y ~ y ' ~ : , "  - rn(y) > 2D}, we take the D-neighborhood Yl.s~ of Y,.o" 
(in the p metric on ?,'~) and cut ~";.s out of ~'[. The set 7'~., is stopped 

u _ _  i t  u ("frozen"), and the remaining part y ~.,,- y I\Y t., will then continue evolving 
under T. 

Let us consider more closely a component 7'; of T"y", for which the 
above stopping rule applies. Since we have cut that component into two 
subcomponents, we will redefine the function r,,(x) on the "moving" 
subcomponent Y;.o. It must be now equal to the p distance of xey~.,, 
from the boundary Oy'[. o (instead of Oy'[). Denote by ( . )  ~.,, the conditional 
expectation over T-"),'[.~ c y". The following relation between the old and 
new values of the function r,,(x) on the moving subcomponent is analogous 
to Sublemma 4.1a and proven in Remark A.6 in the Appendix: 

ps 
( _ l n r ~ W ( T , , x ) ) l . , , ~  ( _ l n  .oJa ,,. (4.1) ,, , t,, (T x)>l. , , ,+f4~- ~ 

where f4 > 0 is independent of ~", and Po and P" stand for the Po measures 
of T-~),'[.o and T-"77., ,  respectively. The meaning of (4.1) is to bound the 
increment of - l n  r,,(x) caused by introducing the stopping rule. We do not 
change F,,(x) on ~,~.,. 

We apply the stopping rule to each moving component at every step. 
Thus, we redefine the function F,,(x) at every step. Its increment at the nth 
step can be estimated due to (4.1): 

<f.""W(X))o ~< <F~ o +f4 Ps, (4.2) 

where 
3 - -  - -  I I  1r 

P ,, - ~ po( T r ~.s) 
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is the Po measure of the set of points stopped at the nth step, exactly (not 
before or after it). 

The part of T"y u that has not been stopped up to the nth step consists 
of a finite or countable number of HLUMs. Note that the preimage of 
that "moving" part under T - "  has the P0 measure P~ = 1 -  ~'~ P~ in the 
above notations. On the other part of yu, which has been stopped before 
the ( n +  l)th step, we naturally "freeze" the function F,,(x), so that 
Fk(x )=Fk +~ (x )=F ,+2(x )  . . . .  for any point x e y  u stopped at the kth 
step. 

In order to apply Sublemmas 4.1a and 4.1b to the moving components 
of T"y" we need them to be short enough, i.e., their sizes must be <e. , .  
It is not always the case. We apply an additional cutting to ensure that 
smallness. It is very simple--we just cut "long" components into shorter sub- 
components of size < e,. along some hyperplanes in M. Those hyperplanes 
can be selected in a rather arbitrary way, so that the overall increment of 
the function F,, can be bounded as 

( F,~ew(x) )o -- (F~ )o ~< P~ f 5 Die,, (4.3) 

where f5 is independent of y" or D. This bound is explained in Remark A.7 
in the Appendix. We now fix D so small that the RHS of (4.3) will be 
< P~f2/(2rn). Therefore, the cumulative increment of (F,,(X))o due to the 
additional cuttings at any m subsequent steps will be less than P~f2/2. 

A combination of Sublemmas 4.1a and 4.1b with the bounds (4.2) and 
(4.3) gives a bound on the cumulative increment of the mean value of F,,(x) 
at any m subsequent iterates of T: 

(F , ,+. , (X) )o- (F , , (X) )o<~ -P ,~ , f z /2+(P~+,+ . . .  +PS~+,,,)f4 (4.4) 

With a slight abuse of notations, here we denote by F,,(x) the new value of 
this function, after its redefinitions in (4.2) and (4.3) and the above freezing. 

The bound (4.4) readily yields for any n/> 1 

(Fm.(x)  )o <~ ~o -- (P~ + P~,, + "'" P~.,{,,-, ~) f f f2  + f4 <~ ~o - nP~',,.f=/2 + f4 

On the other hand, (F. , , , (x))o >1 P~.,,, ln(2D)-  ~, because r,..(x)<~ 2D on the 
moving part of T""~ u, whose p-measure is P,~,,,,. Thus, 

~o +./4 P~.,. <<. 
nf2/2 + ln(2D)-  1 

and Lemma 4.1 follows. 
As a byproduct, we get an explicit formula for the function /~(c), 

assuming ~o to be large enough, /~(c)= 2m/cfz. This function decays very 
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slowly as c--* oo, but we conjecture that an exponential bound for P,~ can 
be also obtained, as for the planar case in ref. 7. �9 

The second evolution lemma pertains to the evolution of sufficiently 
large HLUMs,  i.e., those of size >~D which were obtained in Lemma 4.1. 
Intuitively, the images of large HLUMs can no longer grow in size due to 
the compactness of the space M. Instead, the components of the images of 
such HLUMs in the distant future presumably fill out the space M more 
or less uniformly. We prove only a weaker version of that conjecture. We 
call our version the transitivity of HLUMs and HLSMs, as in ref. 7. 

To give a precise definition of the transitivity, we have to specify an 
H L U M  y~ to start with and a "place" in the space M which is expected to 
be filled with the components of T"7"l. The H L U M  is only supposed to be 
large enough, i.e., the p distance of at least one point x to the boundary 0y7 
must be not less than D. To specify an appropriate place in the space M, 
we need certain geometric notions. Those will be also used later in 
Section 5. 

We fix a large m~>l and a point y ~ M \ S  . . . . .  . We then fix an 
arbitrary rectangular coordinate system in the space Ey and another one in 
E.~,. Together, they form a linear coordinate system in #~yM. Its projection 
into M by the exponential map determines a coordinate system in a 
vicinity of yeM.  We now take an open cube V , ( y ) c M  with sides of 
length e parallel to the fixed coordinate axes and centered at y. If e is small 
enough, then V~(y) does not intersect S ...... and looks like a curvilinear 
parallelepiped in M bounded by some 2 ( d - 1 )  smooth hypersurfaces 
almost parallel to Ey and some other 2 ( d -  1 ) hypersurfaces almost parallel 
to E.~,. We call the former the u-sides of V~(y) and the latter the s-sides 
of it. Certain similar open cubes have been involved in the proofs of 
the fundamental theorem of the theory of hyperbolic billiards in earlier 
works .  C16"13) Next, we take all the H L U M s  inside the cube V~(y) which do 
not terminate inside V~(y) or on its u-faces, i.e., such H L U M s  yu that the 
boundary 3(C c~ V,(y)) belongs to the union of s-faces of V,(y). We also 
take all the HLSMs inside V~(y) which, likewise, do not terminate inside 
the cube or on its s-faces. Each such a H L U M  intersects each HLSM at a 
single point inside V~(y). The set of the points of intersection is then a 
homogeneous parallelogram. We denote it by A~(y). We say that such 
parallelograms are maximal, just as in the planar case. (7"8) 

Remark. More generally, given y e M \ S  . . . .  and two sufficiently 
small reals ~u, es> 0, we can take two open cubes in E.~ and E.~, centered at 
y with sides ~u and es, respectively. The exponential projection of the direct 
product of these cubes into M is a curvilinear parallelepiped, which we 
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denote V,,~.(y). In a similar fashion we define u- and s-faces of V~,.e(y) 
and a maximal parallelogram A~,.~.(y) inside it. 

For our present purposes we need just one cube V o = V,(y) and the 
corresponding parallelogram Ao = A~(y) with some y e M and e > 0 satisfy- 
ing the only condition that v(Ao)> 0. This set Ao will be fixed throughout 
the paper. We call it the meeting place, since it is a "place" in M where the 
images and preimages of the elements of the Markov sieve constructed later 
in Section 5 will meet and intersect one another. 

We now turn back to the H L U M  ~,';. Denote by Pl the normalized 
p measure in y'~. Fix an n >~ 1. Consider all the components of T"y'[ that 
intersect Vo and do not terminate inside V 0 or on its u-faces. For each such 
a component we take its intersection with Vo and denote the union of all 
those intersections by ," 

Lemma 4.2 (Transi t iv i ty ) .  There are constants no>~ 1 and 6 0 > 0  
determined by Vo and D alone, such that for every n >t no, 

pl( T-"y'[.,,) >~ 6o (4.5) 

In other words, after n o iterates of T the portion of the image T"y~ 
staying inside I/"o (in a "proper way") at any time has a p~ volume bounded 
away from zero. The constants no and 60 do not depend on the H L U M  Yl 
provided it is large enough. The "meeting place" Ao can be fixed anywhere 
in the phase space M, thus justifying our term "transitivity." 

S u b l a m m a  4.2a.  There are a point x~ ~ ~,'[ and two reals e", c~> 0 
such that v(A,u~,(xl))>0. 

Proof. It is known that for any LUM ),'~ and for p-a.e, point xey ' [  
there is an LSM ?,S(x). Actually, it suffices to have a subset G c  ~'[ of a 
positive p measure where LSM exist. This statement follows from the 
so-called fundamental theorem for dispersing billiards, t16'~71 The union 
of the LSMs ),S(x), x eG, has a positive v measure due to the absolute 
continuity property of LUMs and LSMs. 

We now claim that for a.e. point of G an HLSM ),~ also exists. 
Indeed, if for an x E G, which is an interior point of ~ ,  there is no HLSM, 
then either T"x~ ~o for some n >/0, or x is a point of accumulation of 
surfaces separating HLSMs inside the LSM "~,~(x). Such "unlucky" points x 
form a set of zero pmeasure  in ),'~ due to the remark at the end of 
Section 3. 

Thus, rS(x)>0 at a.e. point xeGc),"~. Obviously, for some 6 > 0  the 
set G~ = {x~y'~: r~(x) > 6} has a positive p measure and is closed. Let xi be 
a density point of the subset G,~ (such that the density of G~ in small ball- 
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shaped neighborhoods of xj in ~'; is asymptotically one). Besides, we can 
assume that p(x~, 8~'~) > ft. Now, one can apply all the above arguments to 
the H L S M  ~~ 1) and easily obtain a maximal parallelogram A~,,r of 
positive measure. �9 

Denote A~ = A~,e(x~). In virtue of the mixing property of T one has 

v(T"A 1 n Ao) >1 �89 i) v(Ao) (4.6) 

for all n>~n, =n~(Az,  Ao). 
The image T"A~ consists of a finite or countable number  of 

homogeneous parallelograms. Denote by B,.l ,  B,,.2 .... those of them that 
intersect Ao. If x ' ~ B , , . i n A  o, then the H L U M  y~ is obviously large 
enough and does not terminate inside Vo or on its u-faces. The correspond- 

.,,, o,, T - "  " ing component  of ~ ~vtt x i covers the entire o,, , vo(x ) unless the point 
T - " x '  is too close to aVe, i.e., unless d is t (T-"x ' ,  8V~)<ct" for a certain 
ct < 1. This last case is negligible; it pertains to parallelograms whose total 
relative measure is exponentially small in view of (4.6). 

Suppose now that x '~B, , . ic~A o and ~" o . . . . . . . .  i VVlt~ x j covers the entire 
H L U M  o . . . . .  . 7 v l t T - " x " )  ~' votX ). If for any other x" ~ 7S(x ') c~ B,, i the image T" o,,, 

Ol~ t ~ t t  ~ t !  0 1 ~ /  also covers the entire H L U M  YvotX ), and the set J yA , tT -"x ' )  covers the 
0 u  t set ~'Ao(X ), then the intersection B, , . inAo is " g o o d " I i t  is a homogeneous 

parallelogram u-inscribed in Ao and its preimage T-" (B , , , i nAo)  is 
s-inscribed in A,.  This readily follows from the maximality of both A, and 
Ao. We say that such intersections are regular, as in ref. 8. If the intersec- 
tion B,,.~ n Ao is lacking any of these properties, then it is not large enough, 
and we say that it is irregular. ~8~ The latter is the case when either of two 
following conditions holds: (i) for some point x " ~  T~(x ') n B,,a the H L U M  
7~ ") meets either an image TkS_ i  or the set Tk@o with some k, 
1 <~k<~n, inside V o, or (ii) the previous condition fails, but for some point 
x "  ~ y"(x')  n A o the H LSM yo, . (T-"x")  meets either an image T " -  kS_ ~ or 
the set T " - k ~  o with some k, 1 ~< k ~< n, inside V~. Our  method for ruling 
out such "bad" intersections is different from the one used for the two- 
dimensional case in ref. 7. A special, nonmaximal,  parallelogram A~ was 
constructed there, for which bad (irregular) intersections never occurred. 
Here we allow irregular intersections, but bound the measure of their union 
by an exponentially small quantity Cot", ct < 1. Similar ideas were developed 
earlier in ref. 8. We consider three cases. 

Case 7. The value of k is large enough, very close to n. Precisely, 
let ( l - 6 ~ ) n ~ < k ~ < n  for some small fixed 6~>0.  Then the set 
T -  k o. , (), (x )nB, , .~ )  lies in the (ci~'~) neighborhood of the union S _ l w ~ o  
(in the p metric; cf. Section 3) with some a~ < 1. We now estimate the por- 
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tion of AI visiting this tiny neighborhood in the course of [61n] iterates 
of T. The images TA~ ..... TEa'"]AI altogether consist of no more than Ao tat"l 
parallelograms for some A o > 1 which is simply determined by the number 
of the smooth components of the set S_1. Each of those parallelograms 
intersects the (cjcq') neighborhood of S_~ u ~  0 by a set of measure 
~< (c, ~,)e,, according to the estimate (3.10). Therefore, the total measure of 
the irregular intersections for the values of k specified above does not 
exceed const-ct'~a'A~ ''. By choosing 6, small enough, one can make this 
bound exponentially small in n. 

Case 2. The value of k is very small, 1 <<.k<~62n, for some small 
62 > 0. Similar arguments as in the previous' case can now be applied to the 
parallelogram Ao and its preimages T- tAo ..... T-t~2"lAo . As a result 
we again get an exponential bound for the total measure of irregular inter- 
sections with the current values of k. 

Case 3. This case pertains to the remaining, intermediate values 
of k, which satisfy 62n<..k<.,(1-61)n with the fixed &~,&2>0. If B,,.i 
corresponds to such a k, then T-kB,,.i is exponentially small in n in every 
direction due to uniform expansion of LUMs and uniform contraction of 
LSMs. Therefore, T-kB,,i  lies in the (c2ct~) neighborhood of S _ ~ w ~  o, 
where ct 2 < 1 is determined by the values of 61, 62. The sets TkB,.i are 
disjoint for each fixed k. The estimate (3.10) gives a bound on the measure 
of the above neighborhood. Summing it over all the related k again yields 
an exponential bound on the measure of irregular intersections. 

Thus, all the irregular intersections are negligible, again in view of 
(4.6). 

Next, in each regular intersection B,,.~nAo there is a component of 
T"y~ which does not terminate inside Iio or on its s-faces. The inequality 
(4.5) now formally follows from (4.6). 

The last thing we must take care about is the independence of no from 
the HLUM ),~ required by Lemma 4.2. The problem here is that the value 
of n~ in (4.6) depends on A~, which, in turn, may depend on ~7. To solve 
this problem, we observe that the set H o of all the "large" HLUMs 
involved in Lemma4.2 is compact in the C~ tT~ Indeed, if a 
sequence of HLUMs converges to a surface in M in C~ then that 
surface is easily seen to be an HLUM, too. The parallelogram A~ in (4.6) 
can be used not only for a particular HLUM 7~ with which it has been 
constructed, but also for all close HLUMs forming an open neighborhood 
of that HLUM in Ho. Due to the compactness of H o a finite collection of 
such neighborhoods covers Ho, so that a finite number of maximal 
parallelograms of positive measure can "serve" all the "large" HLUMs. 
Each of those parallelograms yields its own n,, and we define no as their 
maximum. �9 
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R e m a r k  4.3. As a byproduct of the above proof, we get that for 
any two maximal parallelograms A~, A2 the intersection T"A~ n Az for 
a large n > 0 consists mostly of parallelograms that we call regular inter- 
sections. Precisely, the measure of the irregular part of T"A ~ n A2 for any 
n >/1 is bounded above by an exponential function ca" for some c > 0 and 
ct < 1 independent of A 1 and A2. 

5. M A R K O V  S I E V E S  

Our construction of Markov sieves for the multidimensional Lorentz 
gas is, in a sense, simpler and cruder than the one elaborated for a planar 
gas in ref. 7. 

We start with an informal description of a Markov sieve--what it 
looks like and the properties it enjoys. So far it has been used only in 
refs. 7-9, but it has already proven an effective tool for studying statistical 
properties of hyperbolic dynamical systems. 

A Markov sieve (MS) is a collection of disjoint parallelograms in M. 
They fill out the entire space M except for a tiny "marginal" set of 
negligibly small measure. The MS is not a fixed object, unlike the Markov 
partition. This means that if we are estimating some quantities involved in 
Theorems 1.1-1.3 for a certain (discrete) time N, then we will construct an 
MS that works for the given N alone. For different times N we use different 
MSs, thus working with a one-parameter family of MSs. Furthermore, 
unlike infinite Markov partitions/5"6~ the elements of an MS for each N 
are comparable (uniform) in structure and size. Namely, they all are 
n-homogeneous parallelograms for a certain n (n can be thought of as a 
second parameter of the MSs, but in our proofs it will be determined by 
N). The diameters of the elements of an MS are exponentially small in n 
and the measure of the marginal set is exponentially small in n, too. In 
other words, for the larger N We take smaller parallelograms, which, 
however, fill the space M more densely. 

We also outline the way the MSs work. Once constructed for a given 
value of N (and the corresponding n), an MS gives a natural representation 
of the iterates T i on M, 1 ~< i~< N, by a stochastic process with a discrete 
time and with a finite number of states (here the elements of the MS along 
with the marginal set form the set of states). The first property of that pro- 
cess is sort o.f a "short memory." It allows us to approximate that process 
by a finite-state Markov chain. The principal property of the approximat- 
ing Markov chain is that the convergence to the stationary distribution is 
fast enough so that it can be observed on the given interval [0, N] .  In 
other words, the relaxation to equilibrium essentially needs no more 
than N iterates of T to occur. In probability theory such properties of 
Markov chains are called regularity conditions. After that the proofs of 
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Theorems 1.1-1.3 will be accomplished by invoking standard methods of 
probability theory. 

We now give a formal definition of the MSs. An MS is determined by 
two large integer parameters N and n, 0 < n < N [actually, we will consider 
n ~ N p for some/~ ~ (0, 1 ); however, we need a certain freedom in choosing 
fl]. We denote an MS by 9tN,, and its elements by B~ ..... B1, I =  I(n, N) .  
We also denote by Bo = M \ ( B I  u . . .  w BI) the marginal set. We denote by 
3 the set of indices { 1 ..... 1}, and so 3 k is the set of k-tuples of indices. 

The MS 9tN.,, is defined by four conditions. Here and further on 
cq, ct 2 .... stand for various constants in the interval (0, 1) and c~, c2 .... stand 
for various positive constants, usually coefficients. The values of ct~ and c,. 
do not depend on the MS parameters N and n. 

Condi t ion 1 (Sizes). diam B~<~c~ct'~ for all i~3. 

Condi t ion 2 (Marg ina l  set). v(Bo)<~c2~' ~. 

Condi t ion 3 (Markov ian approx imat ion) ,  For any integers 
k > / > l ,  1~< i~< i2<  .-. <ik<~N,  and for any collection (Jl . . . . .  Jk) E:'3k 
one has 

v ( T q B  h N Ti2Bj2 ~ . . .  r T#-tBj t_ , /Ti 'Bj t~ . . .  r TikBjk) 

= v ( T " S j ,  n . . .  n T 0 - '8~ ,_ , /T '%, ) (1  + J )  (5.1) 

with some ]A[ ~<c3ct~. Here v(B ' /B")  means the conditional measure, i.e., 
v(B' c~ B")/v(lr). 

Condi t ion 4 (Regular i ty) .  There are constants go, gl > 0  inde- 
pendent of N and n such that for every k >~ gon and for a majority of pairs 
(i, j )  e 3 2 (see below) one has 

v( Tk Bi ~ Bj) >~ gl v( Bi) v( Bi) (5.2) 

The "majority of pairs" means the following. For  every i we denote by 
R i ( k ) c  3 the collection of the values o f j  for which (5.2) holds. Then we 
consider the subset R ( k )  ~ 3 of integers i such that 

y" v(Bj)>~ 1-c4c~ (5.3) 
.J~ Rilk) 

Now the "majority of pairs" means exactly that 

~, v(Bi) >~ 1 - csNct" 5 (5.4) 
i~ R(k) 
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The rest of the present section is devoted to the construction of MSs. 
It starts in a different manner than that for the planar gas. tTI The latter was 
based on so-called pre-Markov partitions, ~5-8~ which partitioned the two- 
dimensional space M into "nice boxes" ("squares" circumscribed by LUMs 
and LSMs) whose boundaries enjoyed certain Markovian invariance 
property; see refs. 6-8 for details. That property was necessary to prevent 
possible "ugly" mutual intersections of the images of those boxes. Those 
ugly intersections are illustrated below. 

We cannot construct pre-Markov partitions here in the multidimen- 
sional case. Moreover, they are unlikely to exist, because the singularity 
hypersurfaces S . . . . .  may cut the boundaries of any "nice" box in a very 
"ugly" manner and thus rule out any strict invariance property that was 
valid in the two-dimensional case. But we are able to construct a crude 
analog of those pre-Markov partitions, and it works well enough. After 
all, the MS only provides an approximation to the dynamics, and so its 
construction and properties need not be absolutely rigid, they are flexible 
by their nature. 

Our construction is based on the ideas of Sinai t~SJ and Bowen. TM 

First we fix a large integer m>~ 1. The set M \ S  . . . . . .  consist of a finite 
number of domains with piecewise smooth boundary. We fill those 
domains with some boxes W i = V A x i ) ,  l<~i<~l~ (see Section4), where 
e = e-".  The boxes should cover the entire space M except for a vicinity 
of the set S ....... . Precisely, the boxes cover M\U,:6,;(S ........ ) and do not 
intersect Uc~=;(S . . . . . .  ) with some c ~ > c ~ > 0  [here U,(S) stands for the 
e-neighborhood of a set S].  

Locally, the centers of boxes constitute a nearly regular ( 2 d - 2 ) -  
dimensional lattice with a variable spacing ranging from 0.8e to 0.9e. The 
boxes are aligned so that neighboring boxes have nearly parallel faces. 
Thus each box intersects 3 2~a- ~ - 1  neighboring boxes and the sizes of 
overlappings are of order e. Similar covers have been used in refs. 13 and 
17 and we omit details. Provided m is large enough, such boxes exist, 
because we allow the constants c6, c~, and 0~ 6 to depend on m, but not 
on n. 

Next, we adjust the boundaries of the boxes to prevent certain "ugly" 
intersections of the images of those boxes under T"' and T-" '  with other 
boxes. Consider the image T ' W i  of a box I4,'i. It looks like a 
"pancale ' - - largely extended in all the u-directions but extremely thin in 
s-directions. In Fig. 1 three possible intersections of T ' W ~  with another 
box Wj are shown. We say that the first two are "ugly" and our next goal 
is to rule them out. First note that the last intersection shown in Fig. lc is 
a typical one, but the two ugly ones still occur too often and can spoil 
further estimates if we do not adjust the boundaries of the boxes. 

82274 1-2-3 
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Fig. 1. Possible intersections of the "'pancake" T " W  i and the box W): (a, b) "'ugly" ones; 
(c) a typical one. 

The idea of the adjustment is borrowed from ref. 15. In the case shown 
in Fig. la we expand the box Wi in the u-directions, so that the image 
T"'WI ~ of the expanded box W~ ~1 will intersect the box Wj very neatly--i t  
will spread exactly up to the s-faces of the latter; see the dashed lines in 
Fig. la. The case shown in Fig. lb is symmetric to the preceding one 
because the intersection T - ' W j n  Wi looks exactly like that shown in 
Fig. la. It is treated in a similar fashion--the box W~ is expanded in the 
s-direction, so that it will reach the boundaries of T'W~. 

After all the adjustments we get slightly larger boxes IV,., 1 ~< i ~< Ij ,  of 
a less regular shape, however. For our convenience we may assume that 
they still have a cylindrical form, i.e., they have a direct product structure 
in the local coordinate system induced by E~.;s; see Section 4. Furthermore, 
we can modify the boundary of the new box so that it will consist of a finite 
number of hypercubes, which we continue calling u- and s-faces. In that 
case we have to sacrifice "the neatness" of the intersections of the images 
of the new boxes with the old ones, now allowing tiny slots between their 
s-faces, but possible losses are easily seen to be negligible. Actually, the 
losses (in measure) are of the same order of magnitude as the slots between 
the original boxes, i.e., exponentially small in n, 
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Our adjustments have reduced the "ugliness" of the intersections, but 
have not eliminated it completely. Indeed, the boundary of the box Wj in 
Fig. la has been adjusted, too, so that some new gaps appear between the 
s-faces of WJ ~) and those of T"W(i  ~. Hence, we need a new adjustment 
consisting in further expansion of the new boxes in such a way that the 
images of their new boundaries fit the boundaries of the boxes obtained at 
the previous step. This second adjustment results in somewhat larger boxes 
WI 2~, 1 <~i<~I~. Additionally, we modify new boxes again, so that they 
will have cylindrical structure and their boundaries will consist of a finite 
number u- and s-faces, as we did above. After performing those adjustments 
(followed by modifications) k times, we get some boxes W~i k), 1 ~< i~< 11, of 
a rather irregular shape. Clearly, the increments of the boxes decay 
exponentially fast in k, and when m is large, the total increments are small 
enough compared to the sizes of the original boxes (say, they are less than 
e/100 if m is large enough). 

We stop this iterational procedure at a finite step k = n, avoiding some 
serious troubles with nonsmooth boundaries of the limiting "boxes" as 
k ~ oo; see refs. 3 and 15 for more detail. Our boxes WI ''~ are still cylindri- 
cal sets and still have a finite number of u-. and s-faces. Their boundaries 
are not completely adjusted--there are some tiny slots [of width smaller 
than e6" = ( 6 e -  ~ )", (5 < 1 ] between the s-faces of images of boxes and other 
boxes as described above. However, possible losses are negligible. 

Next, we borrow another idea from refs. 3 and 15 to define smaller but 
disjoint boxes here. First we observe that each box intersects exactly 
32(d- ~) neighboring boxes (except for the outermost boxes, adjacent to an 
uncovered vicinity of S . . . . .  ). For each pair V~ and Vj of intersecting boxes 
we partition each of them into four smaller ones. To specify that partition 
we observe that the spaces E.~, ...... are almost parallel to E~ s, because x~ and 
X~ are close. Thus, we can assume that the box Vj has a direct product 
structure in the coordinate system EI~.7". Say, let V~= E" ' i • E~ and Vj = 
E': x s ,,.s E j ,  where E~. i are subregions in the spaces Ex, ..... We call those regions 
the basic regions of the boxes V~ and Vj, respectively. Actually, only the 
box Vi has a direct product structure in this coordinate system, and so our 
assumption requires a slight perturbation of Vj, but the relative error 
gained from that is exponentially small in n, and so it is negligible. We now 
partition the box Vj into four ones: 

v',.j = ,~E",c~ E 7 ) • (E~ n E~) 

v~,j = (ET\F-.;) • (E; n e~) 

V ~ = (E'/:~ E j )  x ( E ; \ E : )  i , j  

V 4 u u s s ~.j = (E~ \ E j  ) x ( E , \ E j )  
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All the four boxes vkj, 1 ~<k ~<4, have direct product structures in our 
coordinate system and a finite number of u- and s-faces, and they are 
disjoint. 

Note that we do not disturb the (nearly) invariance property of the 
boundaries gained above, since each face of the old boxes is extended no 
farther than by the distance e and at least by the distance 0.05e. (That 
observation may, however, fail for boxes V whose images T " V  and T - m v  
are close to S . . . . . .  but their total measure is exponentially small.) 

We now consider the collection of all "parts" vki, 1 ~<k~<4, 
l<~ i~ j<~l l .  Since the boxes VI. j and V).~ almost coincide, we discard 
either one of them for every pair i, j. Given a point x ~ M, we define a box 
V(x) = 0 { V~j: x ~ vkj} .  These boxes are disjoint and cover the whole m 
except for a tiny set of exponentially small measure. They enjoy the same 
(approximate) invariance property of the boundaries as the old boxes did. 

Some of our new boxes might be anomalously short. We will simply 
remove such boxes. To be specific, we retain a box V = E~ x E~v, where E'j ) 
and E~v are its basic regions, if each of those regions contains at least one 
point such that the p distance of it from the boundary of that region is not 
less than CvCtg. If 0t7 < e - t  is small enough, then the total measure of the 
removed boxes is exponentially small in n, and so the losses are negligible. 
We fix an ~7 ~ (6e- 1, e -  i ). 

Thus far we have worked with T m instead of T in order to ease the 
control on the possible increments of the boxes during the adjustments. But 
now we have to turn back to T. Denote by ~" the set of boxes constructed 
above and take ~qr = ~e- v T~ r v ... v T .... ~,/r. This is the collection of all 
the mutual intersections of those boxes and their images under T, .... T .... ~. 
For our convenience we also split the disconnected elements of this collec- 
tion into their connected components. As a result we get a collection of 
smaller boxes, which have a direct product structure and a finite number 
of u- and s-faces. Again, we remove all the anomalously short boxes from 
~qr by the same rule as above (with the same value of ~7). The new system 
of boxes enjoys the invariance property of the boundary under the action 
of both T and T-  ~ (we always mean an approximate invariance, allowing 
gaps of width ~<c7~, which are exponentially smaller than the sizes of our 
boxes). It is our crude analogue of a pre-Markov partition. 

We now start the construction of the Markov sieve (MS). For each 
box V~ ~r we denote by E~ and El, the basic regions and then take their 
(2C70~) neighborhoods "~ E v and E~v [in the corresponding ( d -  l )-planes ]. 
The box I7" = / ~  • ^~ , , Ev  has a direct product structure and contains V. We 
call a/~v • (respectively, OE~ • E~v) the u-boundary (s-boundary) of I2. 
Inside each box V ~ W  we take all the HLUMs spreading up to the 
s-boundary of 12. This means that the HLUMs do not terminate inside 12 
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or on its u-boundary.  Likewise, we take all the H L S M s  spreading up to the 
u-boundary of I7". The points of intersections of those H L U M s  and H L S M s  
inside V make  up a homogeneous  paral lelogram A = A ( V ) c V .  The 
measure of the set not covered by the parallelograms, v(U,~. - (V\A(V)) ,  is 
exponential ly small in n by virtue of (3.9). Moreover ,  we can retain only 
"very dense" parallelograms, i.e., such that 

p(E~? c~ A ( V ) )  >t (1 - c8cr p(E~; ')  (5.5) 

where E'~; s are the basic regions of the box V (recall that V = E'~ x E~v). If 
the constant  cr 8 < 1 is sufficiently close to 1, then the total measure of the 
paral lelograms lacking the proper ty  (5.5) for either E'~. or E~v is exponen- 
tially small in n , and so it is negligible. Denote  the resulting collection 
of paral le lograms by d .  The approximate  invariance proper ty  of the 
boundaries  of the boxes Ve'/r under T -+~ and our definition of boxes I 7" 
readily imply the regularity of the intersections of T •  for all 
A~, A2 e ~r i.e., those intersections are either empty  or regular. 

We now take ~r = T-",ar v . . .  v s t  v Tsr v . . .  v T " d .  This is the 
collection of the mutual  intersections of the paral lelograms in ~r with their 
images under T ~ for all i, l i[ ~< n. The elements A ~ ~r are n-homogeneous 
paral lelograms covering the entire space M except for a tiny marginal  set 
A ~~ whose measure is less than c9~g. 

The intersections T • ~A t n A2 for any two paral lelograms A ~, A2 e ~,, 
are either empty  or regular, because the same proper ty  holds for the 
elements of d .  But this is no longer valid for the intersections T+-kA ~ n A2 
with k >~ 2, since some intermediate images T •  1 ~< i ~< k -  1, may inter- 
sect the marginal  set A r176 where we lose control  on their further evolution. 
Nonetheless, the regularity of the intersections TkAt  h A 2 ,  Ikl >t2, would 
be impor tan t  at least for [kl ~< N to ensure the condition 3 of the MS. To  
achieve this regularity, we reduce the paral lelograms in ~r by removing 
from every A �9 ~,, all the points x e A whose images under T ~, Iil ~< N, visit 
the marginal  set A (~ at least once. The measure of the set of points 
removed from all the paral lelograms A e.r  does not exceed 2Nc9o~' ~. If n 
is of order N tj with some fixed/~ > 0, then the total losses are still exponen- 
tially small in n. It is easy to verify, by induction in k, that the remaining 
subset of each A e~r is still a parallelogram, and the intersections 
TkA ' c~ A", A', A" e d,,,, are regular for Ikl ~< N. Moreover ,  we can discard 
all the paral lelograms which, after the reduction, lack the "density" 
property (5.5), since their total measure would not exceed Nc~o~'~o. 

The result of the above construct ion is the desired Markov  sieve ~,,.N. 
It obviously satisfies the conditions 1 and 2. The third condition readily 
follows from the n-homogenei ty of the paral lelograms in 9t~. N, the 
regularity of the intersections between their images and the relation (3.7). 
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The verification of the last condition of the MS requires additional 
considerations. They are based on the two evolution lemmas and involve 
the "meeting place" Ao from Section 4. We describe those considerations 
briefly, since they almost repeat the corresponding arguments for the 
planar gas. ~7~ 

Take any parallelogram A E ~,,. We first claim that its image A' = T"A 
is of size >~ce-" in every u direction. This means that for any point x~  A' 
and any line l~E'~, the projection of A' onto l has the p diameter >~ce -~. 
Indeed, for any point y e A '  the set ?] . (y)  lies in an H L U M  ?~.(y), where 
V' is a box from ~r Therefore, this H L U M  is of p size >~ce-" in every 
u direction with a value of c determined by m. Besides, ?], is a "very dense" 
subset of that HLUM,  precisely, 

p(y].(y))/> (1 - csct~) p(y';,.(y)) (5.6) 

Therefore, the projection of the set 7~,(Y) onto any u-directed line in the 
box V' has p size >~ce-". 

The further images T"+iA, for i~> 1, may suffer from the discon- 
tinuities of T, and so they generally consist of a finite number of 
homogeneous parallelograms. We call them p-components to distinguish 
them from the components of the HLUMs discussed earlier in Section 4. 

Lemma 4.1 applies to the H L U M  ?~,.(y) and says that during the 
evolution of that H L U M  under T i, 1 <~i<<,cltn, a majority of its points 
appear at least once in large components of , u T?v.(y),  i.e., in components 
whose p size in every udirection is >~D. Each of these components 
"carries" on it a p-component of TiA'. The density of the p-components of 
TiA ' on the corresponding components of T;y~.(y) does not change 
significantly under the action of T; by virtue of (3.8). Hence this density on 
most of the components is still high, as high as was specified by (5.6), with, 
say, somewhat larger value of the constant cs. 

The evolution Lemma 4.2 now applies to each of the above large 
components of T~y';,.(y), 1 <<.i<~ctln, and says that for every i>~c~n+no 
a certain portion (of relative p measure ~>c~) of the H L U M  y~.(y) is 
transformed by T ' into a set of components lying inside the box Vo and 
not terminating inside it or on its u-faces. The box V o was defined in 
Section 4. The p-components of T~A ' carried on the components of the 
images of ?'~. that lie inside V o are still dense enough, as specified by (5.6), 
and so their total measure is at least v c~2v(A~ '). 

All the p-components of TiA'= T "+~A carried on the components of 
TJ?';,. inside V o certainly intersect the meeting place Ao, but here we 
need more. We need to work with only the p-components intersecting Ao 
regularly, as defined in Section 4. Remark 4.3 provides a good bound for 
the measure of all the irregular intersections--this bound is exponentially 
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small in n. At first sight, this seems to be not enough, since the measure 
of each A' is of the same order of magnitude, i.e., it is exponentially 
small in n. However, we can combine all the irregular intersections of 
p-components of T" + iA for all A ~ ~r with a fixed i and estimate their total 
measure. Since those irregular intersections are all disjoint for any fixed i, 
Remark 4.3 applies to their union and gives the same bound for the total 
measure of those irregular intersections: co~" with c > 0  and ~ < 1 inde- 
pendent of n and i. From this bound, one readily gets the following. For 
each i/> n + c~n  + no there are some "bad" elements of ~,, whose images 
under T i have not enough p-components intersecting Ao regularly. 
However, the total measure of those "bad" elements of ~,, is exponentially 
small in n. All the other elements A ~ ~,, have enough p-components of 
T"+~A intersecting A0 regularly. Precisely, the total measure of those 
p-components is at least �89 For a given i, we denote the set of 
"good" elements of ~r by sl,+,(i). 

We now take another parallelogram B ~ ~r Its preimages T-iB, j >1 1, 
have the properties symmetric to the ones of the images of A. As a result, 
for every j>~ n + c tin + n o there is a dominant collection of elements of 
B E ~/, whose images under T - j  have enough p-components intersecting A o 
regularly [for each B their total measure is a t  least �88 For a given 
j, we denote that dominant collection of B~ ~r by ~ ,7(J) .  Note that the 
regularity of intersections of T-JB with Ao now means that they are 
s-inscribed in A o and their images under T j are u-inscribed in B. 

We now fix a k >/2(n + c~ n + no) and a decomposition k = i + j with 
i, j such that min{i, j}/> n + c~ n + no. For every pair of parallelograms 
A~r and B~s~c~(j) we can take advantage of the approximative 
formulas (3.5)-(3.6) to estimate from below the total measure of the 
intersections of TiA with T--'B within the "meeting place" Ao. As a result, 
one easily gets 

v( TiA ~ T-JB) >~ g'l v(A) v(B) (5.7) 

with some g'~ > 0 determined by the values of ct2 and C~ from (3.6). 
Next, we consider the elements ,~ and /~ of the MS ~,,.N contained in 

A and B, respectively. In virtue of (5.5), which holds for both pairs A, B 
and A, /~, the elements .4 and /~ are dense enough in A and B. Therefore, 
(5.7) implies 

v( T~ + j,~ ~ ~ )  > l , v(.i i  ) v( /B) ~_gL 

for sufficiently large n. Thus, we have proven (5.2) for a majority of 
pairs /], /~9t, , .N. The estimates (5.3) and (5.4) readily result from our 
definitions of ~r and d~-( j ) .  
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A family of Markov sieves ~R,,.u characterized by Conditions 1-4 
is now constructed. The following theorem is a direct consequence of 
Conditions 1-4: 

Theorem 5.1 (Relaxat ion to the equil ibrium distr ibut ion) .  
For any integers k / > l > l  and l~< i~< i2<  --. < ik~<N there is a subset 
R .  = R . ( i ~  ..... i , )  c ~ k - i +  ~ of (k - l +  1 )-tuples of indices such that: 

(i) If (Jr ..... j k ) e R . ,  then 
/ 

~.  I v ( T " V j ,  c~ . . .  c~ T " - ' V 2 , _ , / T " V j ,  
jl,. . . ,  h -  I = 0 

n . . .  n T i * V j , ) - v ( T ~ ' V j , ~  . . .  n T~ ~<zl 

(ii) One has 
/ 

~" v ( T ~  n . . .  n T i ~ V j k ) > > . l - - A  
(jt. . . . , jk)ER. 

, -.2~,,, (1 ) [ L / 2 ] }  with L = [ ( i t - - i t _ ~ ) / ( g o n ) ] .  where A = m a x t c 1 3 P / ~ ,  - g~ 

Theorem 5.1 is proven in ref. 7. Note that it is still true if one reverses 
"the time," i.e., for N>~i~ > ... >ik>~ 1. The meaning of Theorem 5.1 is 
that the conditional distributions relax to equilibrium exponentially fast in 
the parameter l i t - i ~ _ ~ l  (which represents the "interval" between the 
"future" and the "past"), at least as long as it is less than const .n 2. 

6. THE PROOFS OF THEOREMS 1.1-1.4 

Theorem 1.1 follows from Theorem 5.1 immediately; see refs. 7 and 8. 
The proof of Theorem 1.2 is based on Theorem 5.1 and purely 

probabilistic arguments, which do not make use of any specific feature of 
the underlying dynamical system. The proof may be found in ref. 7. Its 
probabilistic part has been borrowed from ref. 11. We emphasize that MSs, 
along with Theorem 5.1, are thus a rather universal tool-- they automati- 
cally ensure the statistical properties described in Theorems 1.1 and 1.2. 

The proof of Theorem 1.3 is a combination of some general proba- 
bilistic arguments with one special geometric property of the dynamical 
system in question. That property is only required to ensure the non- 
degeneracy of the matrices V~ and V 2. We discuss that last property here 
and refer for the probabilistic part of the proof of Theorem 1.3 to refs. 6 
and 7. 

We verify only the nondegeneracy of V2, since that of V~ will then 
follow immediately. Suppose that V 2 is degenerate, i.e., det V2 = 0. In virtue 



Periodic Lorentz Gas 39 

of our remark to Theorem 1.2, a certain linear combination (a, q t - q o )  is 
then a coboundary function on M. Here a = (al ..... aa) is a constant vector, 
and ( - , - )  again stands for the scalar product in ~a. 

All we need now is a periodic point x e M for the map T with a period 
no >~ 1 (i.e., T"~ = x) such that 

(a, (q,,0- qo)) =#-0 (6.1) 

at the point x. Indeed, the function (a, (q , , -qo))  is the sum of iterates of 
a coboundary function (a, q l -  qo), and so it stays bounded in distribution 
as n grows. On the other hand, that function grows linearly in n at a par- 
ticular periodic point. From its continuity, it also takes values proportional 
to n in a vicinity of the periodic point, which depends on n. If the above 
coboundary function were bounded, we would get an obvious contradic- 
tion. For coboundary functions from L2(M, v) some extra reasonings are 
required to get a contradiction. They are provided in ref. 7. We only prove 
here that a periodic point with the property (6.1) exists. 

Fix an integer N>~ 1 and take N d copies of the torus -Uor d such 
that they make up a big cube of size N x  N x  ... x N in the space R a. 
This cube can be also considered as a "big" torus -1-or~ by imposing 
periodic boundary conditions. Projecting the trajectory of the moving 
particle from R d down to that big torus, we get a new billiard dynamics 
in a region QN made up by N d copies of Q (as of "bricks"). We denote by 
9J/N = QN • Sa-1 the phase space, by { ~v}  the phase flow, and by TN the 
billiard ball map of that big system. The dynamics {~U~v } obviously 
commutes with space shifts of the big torus along the sides of the original 
torus Tor  d. (Those shifts generate a finite Abelian group isomorphic to a 
direct product of d identical N-element cyclic groups.) 

The billiard dynamics in QN certainly meets all the conditions of 
Theorem 1.1, and so we can again consider a parallelogram Ao defined in 
Section 4. Since its closure ,4o is also a parallelogram, we can assume that 
A o is closed. Let n~ ..... na be integers such that O<~ni<N for every i. 
Consider the translation of Tor  a generated by n~ shifts along the first 
side of the original torus Tor  '/, then nz shifts along the second side, etc. 
The resulting translation of Tor % generates a transformation of the 
phase space T)/N, which commutes with the dynamics {luCy }. Denote by 
A' the image of Ao under that transformation. It has the same form and 
measure as Ao, it is just located in another part of the phase space. 
Due to the results of Section 4, the intersection T " u A o n A '  for large n 
consists mostly of the regular intersections of the p-components of T'NA o 
with A'. Let U be one of those p-components of T'NAo. By projecting 
the dynamics { ~u~v } down to the original torus we get a periodic point 
x . . . .  n T-"Uc~ U ~  T " U ~  T'-"Un . . . tha t  belongs in M, whose period 
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is n. On the other hand, q , , - q o  at the point x is an integer vector with 
the components ( m ~ N + n ~ , r n 2 N + n  2 ..... m a N + h a )  with some integers 
m i . . . . ,  IYld" 

L e m m a  6.1. For any nonzero real-valued vector a = (al ..... ad) one 
can find integers N and n~ ..... na such that the sum 

a l ( m l N + n l ) + a 2 ( m 2 N + n 2 ) +  . . .  + a d ( m d N + n d )  (6.2) 

does not vanish for any integers m~ ..... md. 

Actually, it is easier to prove that the expression (6.2) never takes 
values of the form N m  with any integer m. This can be done by induction 
in d. The proof is elementary and we leave it to the reader. 

The existence of a periodic point x e M with the property (6.1) is now 
established. Hence the proof of Theorem 1.3 is accomplished. 

Finally, the proof of Theorem 1.4 is based solely on Theorem 1.3 and 
certain general measure-theoretic arguments. It is provided in ref. 6. 

7. C O N C L U D I N G  R E M A R K S  

Here we discuss possible extensions of Theorems 1.1-1.4. 
First of all, one might wish to relax Assumption A. A periodic Lorentz 

gas that does not satisfy it is said to have no horizon. Such a gas looks, in 
a sense, more realistic than the one with finite horizon. For two-dimen- 
sional case Theorems 1.1 and 1.2 are still true without Assumption A, as 
was shown in ref. 7, but Theorem 1.3 fails in that case. The reason is that 
while the mean value ( z ( x ) )  is still finite, the second moment  ('t-2(x)) is 
infinite, and so the sum (1.5) contains an infinite term at n = 0. P. Bleher 
has conjectured that in this case the displacement q , , -  q0 in (1.4) should be 
rescaled by (n In n) ~/2 instead of x/~. He supported his conjecture with a 
detailed calculation of the mean displacement ( q , , - q o )  in ref. 1, but this 
is not a conclusive proof yet. 

We conjecture that Theorems 1.1 and 1.2 are valid for the multidimen- 
sional Lorentz gas without horizon as well. The proofs in the planar case 17) 
involved an explicit description of the so-called "cells" in the space M- - the  
subregions where the map T is continuous and the function z(x) takes very 
large values. It is hoped that the structure of cells for the multidimensional 
gas can be described in a like fashion. It is easy to verify that the mean 
( z ( x ) )  is finite but ( r2 (x ) )  is infinite, just as for the planar Lorentz gas 
without horizon. Hence, Theorem 1.3 fails, but a certain rescaling of (1.4) 
might be possible. 
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Theorem 1.1 provides only an upper bound for the decay of correla- 
tions. The actual rate of the decay is still unknown. Certain old numerical 
experiments (see, e.g., ref. 2) have revealed a stretched-exponential decay of 
the type 

I ( ( f  o T " ) .  g )  -- ( f ) ( g ) [  ~ a";" 

with ~, < 1 (besides, y-* 1 as the dimension d grows). On the other hand, 
certain recent numerical researches showed an exponential decay even for 
planar hyperbolic billiards (see references given in ref. 8). There is also a 
rigorous result (8~ supporting the conjecture of an exponential rate of 
the decay of correlations. On the contrary, nothing is known about the 
decay of correlations for the continuous-time dynamics { ~'}. Apparently, 
without the finite horizon Assumption A, the correlations for that flow 
decay very slowly, most likely as slowly as algebraically. 

Finally, we discuss small perturbations of the Lorentz gas dynamics 
with finite horizon by small constant external fields (electric, magnetic, or 
combined ones). A perturbation of that type for the planar gas was studied 
recently in ref. 9. This perturbation destroyed the invariant measure v for 
the map T, but strong hyperbolic properties of T persisted. Despite the 
absence of an absolutely continuous invariant measure, the machinery of 
the Markov sieves worked. It was used to construct a (singular) invariant 
measure, to establish its ergodicity, and to estimate the rate of the decay 
of correlations. The resulting invariant measure was the so-called Sinai- 
Bowen-Ruelle (SBR) measure, which was singular on M but absolutely 
continuous on the unstable manifolds. The analysis performed in ref. 9 led 
to mathematical proofs of certain classic electrodynamic equations, in 
particular, Ohm's law and the Einstein relation. The results of ref. 9 can be 
extended straightforwardly to any dimension d~> 3 by using the Markov 
sieves constructed in the present paper. There is a hope that other 
hydrodynamic equations can be derived in this way. 

A P P E N D I X  

The Appendix consists of four sections, in which we give support to 
the claims made in Sections 3 and 4 whose proofs involve specific billiard 
techniques. Let us first introduce some conventions. We will denote by ct 
various constants between 0 and 1 whose exact values are not relevant. We 
also denote by c and a various positive constants. 

A1. Here we derive the formula (3.1). We consider a generic point 
x = (q, v) �9 M and define several coexisting measures in the tangent space 
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~ , . M  (all of them will be simply scalar multipliers of the Lebesgue 
measure). This space is a direct product  of the tangent spaces ~q(0Q) and 
~ , S  d - l ,  and so the first natural  measure is the Lebesgue measure 
din,. = dm q dm'~_, i.e., the product  of the Lebesgue measures in ~ ( 0 Q )  and 
~, ,S d-  1. Another measure is dv,.=c,.(v,  n(q))dm, . .  We then consider the 
tangent spaces ~.,.y"'S(x) to the local manifolds ~,"'S(x) at the point x. Their  
natural  projections onto J c ( a Q )  along ~ , S  d- 1 are one-to-one linear maps,  
and so the measure dm.q~ induces on these tangent spaces measures dm~.". 

11, S ~ 7 -  11, S . We also have the measures dp,. in the spaces ,y,.y (x) induced by the 
p measures in 7""(x) defined in Section 2. Evidently, dp.~''= (v, n(q)) dm",: ~. 

Since y"(x)  and y ' (x)  are transversal at x, the product  dm." dm.~. is a 
measure in ~~M. We now derive the relation between this measure and 
dmx. To this end, we pick a basis (el ..... ea_ i) of or thogonal  unit vectors 
in Yq(OQ) such that  the vector el is a linear combinat ion  of v and n(q). 
Denote  by Jx a ( d - 1 ) - d i m e n s i o n a l  subspace in [Ra or thogonal  to the 
velocity vector v of the point x. It is naturally identified with Y~.S a - l .  
Denote  by e', the unit vector in Jx (=~r ,Sd- l) that is propor t ional  to the 
projection of e~ onto J,. along v. The collection (e'l, ez ..... ed_ 1) is a basis 
in J,., and then in J , ,S  d- ~. Therefore, 

E =  ( (e l ,  0), (e2, 0)  ..... (ed_ ,, 0), (0, e]), (0, e2) ..... (0, ea i)) 

is a basis in ~7.,.M, where a pair (ul, u,.) of vectors uls,Y-u(OQ) and 
u2 ~ ~-~S a- l means a vector in ~--xM in the usual sense. We now project the 
vectors et ..... ea_l~Y-q(OQ) onto the subspaces " T , y " " ( x ) c ~ , . M  along 
37,,S a- i. The projection of e~ is (ei, .~'+"(x)e~) for i>~ 2, and the projection 
of e, is (el ,  (v, n(q) ) .~ '+ ' (x)e ' , ) .  One can easily write down the coordinates 
of all these 2 d - 2  vectors in the basis E as in the form of a 
( 2 d - 2 )  x ( 2 d - 2 )  matrix J and compute  its determinant.  The result is 

Idet JI = (v, n(q)) d e t ( ~ ' ;  (x) - ~s+ (x)) 

Therefore, 

dm x = (v, n(q)) det(~'~. (x) - z~'+ (x)) dm.~. dm~,. 

= (v, n ( q ) ) - '  d e t ( ~ ' ~ . ( x ) -  ~ '+  (x))dp.'~ dp.',. 

As a result, we get 

dvx = c,, det(~'~. (x) - ~~.  (x)) dp.~ dp',. 

and thus complete the proof  of the expression (3.1). 
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A2. We now turn to the inequalities (3.3), (3.4), and (3.8). We derive 
them together by studying how smoothly the operators ~"~"(x) depend on 
x in homogeneous parallelograms. First, we write down an operator-valued 
continuous fraction formula for ~'+(x): 

I 
~ ; _  (x )  = - I (A.  ] ) 

vol+  I 
K(Tx)  + 

I 
~1I+ K ( T 2 x ) +  . . .  

where zi = r(Tix) and I stands for the identity operator. A ratio A/B  always 
means AB -~. All the operators in (A.1) act in the ( d -  1)-dimensional 
space J,. orthogonal to the velocity vector v. Recall that we identified the 
linear spaces J.,. and J r  '.,- in Section 2. In the same way we now identify 
the spaces Jr,.,. and Jr,+,,: for all i~77 by isometric projections along the 
normal vectors to c3Q at the points T(~c. Thus, all the spaces Jr'.,-, i~ Z, are 
identified and the formula (A.1) is justified. The operator ~ " ( x )  is 
expressed by an operator-valued continued fraction constructed by track- 
ing the negative semitrajectory of x (in this case, however, one has a 
positive sign in front of the fraction). 

We now consider two points x=(q.,.,  vx) and y = ( q y ,  v.,.) in an 
n-homogeneous parallelogram A. Due to uniform contraction and expan- 
sion, diam A ~< const-ct", where the diameter is measured in the Riemann 
metric in M. (Actually, the contraction property has been established 
for the pmetric on LUMs and LSMs, but one can easily verify that 
dist(x, y)~<const. [p(x, ),)]1/2 for any x and y in one LUM or LSM.) 

Lemma A.1. If two points x and y belong in the same n-homo- 
geneous parallelogram, then 

(v,., n(q,.))(v.,., n(q,.))- (v.,., n(q.,.)) ~< const- ct" 

Proof. We first observe that 

I (v.,., n(q.,.)) - (v,., n(q,,))l ~< const- at" (A.2) 

I f x  and y are not too close to c3M, say, if I(vx, n(q.,.))[ ~>no~ const, then 
Lemma A.1 follows from (A.2). If x and y lie between two close hyper- 
surfaces in @o, say, (v, n(q)) = k - ~  and (v, n(q)) = (k + 1 )-~ k >_, no, then 

[(vx, n(q.,.)) -- (Vy, n(q.,.))[ ~ 20k to+ l~ ~< 40(v,., n(q.,.)) ~~ l~/o 
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Therefore, 

(vx, n(qx)) - (Vy, n(qy)) 
(v,., n(q.,.)) 

~< const - r + I I  

and Lemma  A.1 follows. �9 

We now define a special linear t ransformation 7",..,. on R d that  takes x 
to y and maps  Jx onto J,.. First we shift •d by the ve c to r  q.,:qy, SO that qx 
will go to qy. Then we apply a rotat ion through the angle between v,. and 
v,., so that the image of vx will coincide with v.,.. Thus, J,. is mapped  onto 
J~,.. In addition, in case (vx, n(qx)) is small, say, less than no ~ then we 
apply a rotat ion of R d about  the vector v,, so that  the principal eigenvector 
of K(x) (that with the largest eigenvalue) will go to its counterpar t  for the 
opera tor  K(y). So, the map  Txy is a composi t ion of a shift and one or two 
rotations. Clearly, T,:v is an isometry. Since K(x) depends on x smoothly,  
the map  T,-y differs from the identity opera tor  by less than cons t ,  ct" (in the 
Euclidean norm).  

Denote  ~ " s t  v I = T - t  o~ '  . . . . .  o _+ . . . . . . . .  _+ tYJ T,-y; these are operators  in Jx,  just 
like ~ S ( x ) .  Now, it is a straightforward est imation that  

I d e t ( ~ _  (x) - ~ +  (x)) - det(g~'~_ (y)  - g~_ (y))[ 

~< const �9 [-(v.,., n(q.,.))- t dist(x, y)  

+ (v~, n(q. , . ) ) -1_ (Vy, n(qy))-I 

+ II~L(-x')-~"_(y)ll + I I~+ ( x ) -  ~+(y) l l - I  (m.3) 

The two last terms are the most  difficult to bound from above. 

L e m m a  A . 2 .  If  two points x and y belong in one n-homogeneous  
paral lelogram A, then 

II~"_ (x) - , ~ "  (y)ll ~< const �9 ~" (A.4) 

and 

II ~"~. (x) - ~ .  ( Y)ll ~ const �9 ~" (A.5) 

One might think of (A.4) and (A.5) as the H61der continuity of the 
operators  ~"_ and ~ +  on homogeneous  parallelograms. 

Before proving L e m m a  A.2, we observe that it, along with Lemma  A.1 
and the bound (A.3), completes the proof  of the inequality (3.3). Thus, we 
now have to prove (A.4), (A.5), (3.4), and (3.8). The four are closely 
related and we derive them together. 
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For any point x e M,. we denote by 

2U(x) = de t ( I+  t(x)  ~ (x)) and 2"(x) = [ d e t ( I -  z(x) N~2 ( T x ) ) ] -  l 

the local one-step rates of expansion of the p volume in ?"(x) and, 
respectively, of contraction of the p volume in ~,S(x) [cf. (2.3)]. Then 

A ~.'~(x) = 2 " ( x )  2",s( T x ) . . .  2"'s( T k- Ix) 

are the corresponding k-step rates of expansion/contraction. It is well 
known (see, e.g., refs. 7, 9, 10) that if x and y belong to one LSM (LUM), 
then the Jacobian of the canonical isomorphism from 7%~) to ?"(y) 
[respectively, from ?'(x) to ?S(y)] is 

A'~(x) ( . A~'l"-~y)'~ 
J"(x, y)= klirn A~(y) resp., J~(x, y)= kl~na ~ l ~ J  (A.6) 

There is a helpful duality in billiard systems. The reverse dynamics {45-'} 
is also a billiard system in the same configuration space Q. So, many 
statements have their dual forms obtained by just reversing the dynamics. 
For example, the bounds (A.4) and (A.5) are dual to each other. It always 
suffices to prove either one of two dual statements. 

By taking the natural logarithm of both sides of (A.6), one can easily 
reduce the estimates (3.4) and (3.8) to two inequalities 

ln2'i (x) ~ C~c~g (A.7) 

for any points x and y in the same n-homogeneous LSM and 

2~(x ) 
n2,-- ~ ~< C ~ g  (A.8) 

for any points x and y in the same n-homogeneous LUM, with another 
positive constant C~i 

Note that (A.7) and (A.8) are not dual. Nonetheless, the bound (A.8) 
does have a dual form: that is the bound (A.7) for any x and y in the same 
n-homogeneous LUM. In other words, it suffices to prove (A.7) for any x 
and y in one n-homogeneous parallelogram. 

We now derive (A.7) assuming x and y belong in one n-homogeneous 
parallelogram A. We again invoke the transformation T~,.. It is a 
straightforward calculation that 
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Ide t ( I+  r(x) ~'~_ (x)) - d e t ( I +  r (y)  ~'~_ (Y))I 

~< const �9 I-I*(x) - z(y)l (v.,., n(qx) ) - '  

+ (v.,., n(qx)) -  t _ (v.,., n(q:.))- J + (vx, n(qx)) -1 . dist(x, y)  

+ I1~"_ (x) - ~"_ (Y)ll ] (m.9) 

It is easily seen that 

It(x) - r(y)l ~< dist(x, y)  + dist( Tx, Ty) <~ const �9 c~" 

A combinat ion of the bound (A.9) and Lemmas A.1 and A.2 then gives 
(A.7) for any x, y E A .  

As a result, all our  considerations boil down to two inequalities 
in Lemma A.2, only one of which has to be proven, due to the duality 
principle. Unfortunately, neither is easy to prove. Our  proof  is based on 
a somewhat cumbersome decomposit ion of the operator-valued continued 
fraction (A.1). 

We will prove the bound (A.5). First we denote f i = r ( T i y )  and 
K(Tiy)  = T.~,)K(TiY) T,..,. for i>~0. Then we write down an expression 

~ +  (3') = (~oI+  (K(Ty)  + ( ? , I +  (R(T2y)  + . . .  )-1)--I)--1)--1 

similar to (A.1). Our  further arguments will be based on the decomposit ion 

~ +  (x) - N'+ (y) = ~ +  (x){ [ ~ +  (.v)] - '  - [-~k (x)] - '  } ~ _  (y) 

= - ~ k  ( X ) ( ~ O  - -  %) ~ +  ( y )  

+ D + ( x ) [ K ( T x )  - K(Ty)]/)+ (x) 

+ D " + ( x ) [ ~ ' + ( T x ) - ~ ' + ( T y ) ] / 3 " +  (y) (A. IO) 
where 

D + ( x ) =  { l + ' t ( x ) [ ~ "  (Tx)]  - ' }  - t  

/ 3 + ( v ) =  I ~ , - i  .~ , . -J - ,  . { + ( ) ) [ T x .  ,. @ _ ( T ~ )  T,-,.] } 

Iterating the decomposit ion (A.IO) k times yields 

~ +  ( x ) ,  ~S+(y) 

k 

= - -  E E ( + - l ) ( x ) " ~ a + ( r i - l x ) ' ( ' r i  I 
i = 1  

k 

+ E E'2- [K(:r 'x)-  R(T'y)] �9 ~:'~ 
i = 1  

+ E(+ k, �9 [ ~ _  (Tkx) -- ~ k  (Tky) ] .  ~'1+~" 

L- , )  -" V'- .F:~ -'1 _ . ~ + ( 'y) 

(A. l l )  
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where Et~_)=D'+(x)...D~+(T'-'x) and P_,~I=~(T'- 'y) . . .D~+(y) .  We 
stop the decomposi t ion (A.11) at k =  In/2] .  

In order to prove the bound (A.5), we observe the following: 

(i) The operators  D'+(Tix) and D~(Tiy) are contractions: 
IIO'+(Tix)ll <~ct and IL/3~(Tiy)ll ~<~ uniformly in x, y and i~>0. 

(ii) dist(Tix, Tiy) <<. const �9 ct"- i, and so ITi-- L'I ~< const �9 en-  ~. 

(iii) II~'+(Tkx)--~+(Tky)ll is uniformly bounded in x, y, and k. 

(iv) If, given an i<~k, the points Tix=(qi,  vi) and Tiy are not too 
close to OM, say, if (v~, n(q~))>~no~ const, then 

IIg(T~x) - ~2(T;y)ll .N< cons t ,  dist(Tix, T~y) <~ cons t ,  ct " - i  

(v) The last case to be considered is the one when Tix = (qi, vi) and 
T~y belong in one thin layer between two close hypersurfaces of No for 
some i<<.k. In this case the opera tors  K(T~x) and R(Tiy) have one large 
eigenvalue each. [ F o r  example,  if the scatterer at which the reflection at the 
point Tix occurs is a sphere of radius r, the largest eigenvalue of K(Tix) is 
2r-l(vi, n(qi))-l.] The difference K(Tix)-K(T~y)  might also have a large 
norm, however. In this case we will estimate the norm of a composi t ion 

Fi = D'+ ( T i- Ix). ( g( Tix ) - ~2( Tiy ) ) �9 ff)'+ ( Tiy ) 

All our  arguments  will be based on elementary geometric considerations 
and we only outline the main steps. Denote  by X1 and )~,- the largest eigen- 
values of K(Tix) and K(T~y), respectively, and el and el the corresponding 
unit eigenvectors. First we notice that the points TJx and TJy are e,-close 
for all j <<. n/2 with some e,, = const �9 en. Thus, I l e i -  ~ill ~< const �9 en and, due 
to L e m m a  A.1, IXi-)~il ~< cons t .  0t"X~. We now take an arbi trary unit vector 
w s J x  and consider w I = / 3 ~ ( T  i -  ly) w. Since Xi is large, it is easy to verify 
that I(w~, e~)l ~< const-  ~,~-1. Besides, I(w~, ei)l ~< const �9 ( g ,  ~ + e,). We then 
consider a vector w,_= (K(T~x)-R(T~y))w I. Its projection onto el has a 
length ~<const.)~ie,,, and its projection onto the or thogonal  complement  to 
eg in Jx has a length ~<const.e,~ for some a > 0 .  Finally, the vector 
w3=D+(Ti - l x )  w2 has a length ~<const-e,". Thus, we conclude that 
IlFs[I ~< cons t ,  e,  ~. 

Applying all the five observat ions ( i ) - (v)  to the decomposi t ion (A.11) 
results in the bound (A.5). L e m m a  A.2 is now proven. 

,a,3. We proceed by support ing the relatively simple properties of 
H L U M s  and H L S M s  mentioned at the end of Section 3: First we verify the 
inequality (3.10). Every H L S M  of_ps ize  ~<e that  intersects the set 
S_ l.t w ~o wholly lies in a (const .  ~ / e )  ne ighborhood of S_  t, l w ~o (taken 

822/74/I-2-4 
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in the Riemannian metric on M). The v-measure of this neighborhood can 
be estimated directly, and one gets the bound (3.10). 

Our  next step is almost compiled from ref. 7, Appendix 2. We pick a 
Po > 0 and set e,, = po2g for all n >/0, where 20 < 1 is an upper bound on the 
one-step rate of contraction of HLSMs  in the P metric. We then estimate 

~v(U~.(S_~.I w ~o))~< const .po p (A.12) 
n f f i 0  

We now claim that, given a point x �9 M such that T"x r U , , (S  ~, 1 w ~o) for 
all n/> 0, an H L S M  ~,S(x) exists and the p distance from x to its boundary  
OyS(x) is bounded below by P0. The proof  of this claim is well known; see, 
e.g., similar statements in refs. 12 and 16. Thus, the bound (A.12) implies 
(3.9). 

Furthermore,  let an LSM ys contain an infinite number  of HLSMs  
and the surfaces separating them accumulate at an interior point of ys. 
Then the images T"y s, n/> 1, intersect ~o for an infinite sequence of values 
of n. Due to the inequality (A.12) and the Borel-Cantelli  lemma such 
points x form a set of zero measure. 

A4. In this section of the Appendix we support  the claims made in 
the proof  of Lemma 4.1. We will work here in the "full" phase space ~Ill 
instead of M. The flow {~ '}  is hyperbolic, and so at a.e. point 
x = (q, v) �9 ~0/there is a ( d -  I )- dimensional local unstable manifold TU(x) 
for the flow. Its natural projection to Q is a (d -1 ) -d imens iona l  surface 
orthogonal  to the velocity vector v whose curvature operator  at the point 
x is :~"(x)={[ ,~"(x+)]- I - ' r (x) I}  -1, where ~ ( x ) i s  the first positive 
time of reflection of the orbit starting at x and x+ = qs~tx~+~149 M. 

The singularities of the flow {q~'} are smooth hypersurfaces in 9J/. For  
each finite t there are a finite number  of compact  smooth hypersurfaces of 
singularities for ~ ' .  The set of singularities for qs' for all t > 0 (all t < 0 )  
consists of a countable number  of compact  smooth hypersurfaces which we 
denote S + (resp., S - ) .  It is well known 113'17) that the components  of S + 
intersect those of S -  transversaUy. We claim that, likewise, L U M s  T"(x),  
x�9 intersect the components  of S § transversally. We will prove this 
claim by developing geometry on the singularity sets S • 

Let x = (q, v) �9 S + u S -  and n(x) be the normal  vector to S + w S -  at 
x. According to our tradition, we decompose it as n(x)=(nq(X), n,(x)), 
with nq(x) �9  ~q(Q) and n, (x) �9  a- 1). Since we have identified Y-~S a- l 
with J.~, the vector nv(x) belongs in Jx. Moreover,  nu(x ) belong in Jx, too, 
because S + u S -  is invariant under q~'. At a point x, = q~'x, t �9 R, we have 
another normal  vector n ( x , ) =  (nq(X,), n~(x,)) to S + u S - .  The relation 
between n(x) and n(x,) can be derived from the following observations: 
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(i) If no reflection occurs in the interval (0, t), then 

nq(Xt)  = nq (x )  and nv(x,) = n~(x) - tnq(X) (A.13) 

(ii) If t is an instant of reflection at a point x, = (q,, v,) e M, then 

nq(x,+o)=nq(X,_o)-K(x,+o)n,,(X,_o) and no(x,+o)=n,,(X,_o) 
(A.14) 

where we use the same notat ions as in (2.2) and again identify the spaces 
Jx,_0 and J.~,.o. One should note that  the relations (A.13)-(A.14) jus t  give 
a normal  vector, not necessarily a unit one. We do not care about  the 
norm of n(x,), since any restriction on it would complicate our calculations 
and would not help in any way. 

The next quanti ty we consider is the scalar product  s ( x ) =  
(nq(X), nv(x)), which is a function on S + u S - .  Its sign does not depend on 
the choice of the normal  vector. The relations (A.13)-(A.14) readily imply 
the following 

Lemma A.3. If s(x,) is negative (nonposit ive) at t=t ' ,  then it 
remains negative (nonposit ive) for all t >/t ' . .Likewise, if it is positive (non- 
negative) at t = t', then it is also positive (nonnegative) for all t <~ t'. 

Any point x = (q, v) ~ So [i.e., any point with q ~ OQ and (v, n(q)) = 0]  
is, in a sense, an "origin" of both S § and S - .  Precisely, S § = U,>o q~-'So 
and S - =  U,>o ~ 'So .  (Note that  since the velocity vectors are tangent to 
aQ on So, there is no problem in moving So both forward and backward 
in time.) It  is easily seen that  the normal  vector n(x) to both S § and S -  
at any point x e So is n(x) = (n(q), 0). Therefore, s(x) is strictly positive on 
S+\(So) and strictly negative on S-\ (So) .  In particular,  we get another  
proof  that  S § and S -  always intersect transversally. A bit more  detailed 
analysis of (A.13)-(A.14) leads to one more  conclusion: 

L e m m a  A.4.  Apart  from a vicinity of the subset So in ~0/, the vec- 
tors rlq(X) and nv(x) are comparable  in length: cl <<. Ilnq(x)ll/ILnv(x)ll <~ c2, 
with some positive constants  c~ and c 2 depending only on the vicinity of So 
that one excludes. 

The next l emma  follows from the previous one and a known fact that  
the eigenvalues of .~"(x), x e 9J/, are uniformly bounded away from zero: 

L e m m a  A.5.  Apar t  from a vicinity of So c 991, the hypersurfaces of 
S § always intersect L U M s  F "  of the flow q~' at angles ~>c3 with a positive 
constant  c3 depending only on the vicinity of So one excludes. 
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By the angle between a surface of S + and an L U M  FU(x) intersecting 
at x e S  + we naturally mean the angle between the normal  vector n(x) to 
S + and the d-dimensional subspace in #?x~J/ or thogonal  to #?xF"(x). To 
prove Lemma A.5, one can easily show that the angle between the vectors 
n(x) = (nq(X), nv(x)) and nl = (no(x), :~"(x)no(x)) [ the latter is tangent to 
F" (x ) ]  is uniformly bounded away from n/2. 

Proof of Sublernma 4.1a. First, we notice that for each m/> 1 there 
is a finite number  of manifolds in S . . . .  o, and they touch a finite number  
of compact  smooth components  of S +. We denote the union of the latter 
by S,, +. The sectional curvature of those components  is bounded above by 
a finite quanti ty C,, (C,, may depend on m, but it does not matter for us 
how fast Cm grows with m). To verify this claim, it is enough to show that 
(i) the sectional curvature of both S § and S -  is bounded at the points of 
their origin, i.e., on So, and (ii) the sectional curvature does not grow too 
rapidly during the evolution of So under ~ '  and ~ - ' ,  t > 0, i.e., it stays 
finite at finite times. Pa r t ( i )  follows from the above remark that 
n(x) = (n(q), 0) on So; recall that the sectional curvature of 8Q is bounded. 
Part  (ii) can be derived by a direct calculation based on the "equations of 
motion" (A.13)--(A.14) for the normal  vectors to q~• as t grows, and we 
omit that. 

Due to Assumption B, there is an ~,, such that any L U M  F" of size 
<e , ,  intersects no more than Ko components  of S,, +. Since e,,, depends on 
m, it can be adjusted to whatever large value of  C,,, and then we can think 
of those components  as almost flat hypersurfaces in a vicinity of F". They 
intersect the H L U M  transversally by virtue of Lemma A.5. 

We now consider an H L U M  71 c M of a p size <e, , .  The structure of 
the p metric on ~g can be better understood if one considers an or thogonal  
cross section s of a bundle of trajectories coming to the set ~'~ c M, just 
before the reflection. The natural Riemannian metric in X" is isomorphic to 
p in y~. By equipping the surface s with unit normal vectors pointing in 
the flow direction, we get an H L U M  F~ for the flow. Since ~,~ is cut by 
~<Ko components  of S . . . .  o, the H L U M  F~ is cut by ~<Ko hypersurfaces 
of S,,  + . 

We denote by p~ the normalized p measure on ~7 and by ( - ) ~  the 
expectation with respect to Pl. To emulate the functions r,(x) and ri,(x) 
from Sublemma 4.1a, we introduce two functions on S":  r (x )= dist(x, 8S") 
and r'(x) = dist(x, 8s TM w (S + c~ _r,,)). We claim that 

- (In r'(x))~ <~ - ( I n  r(x)), + C'. Ko (A.15) 

provided e,, is small enough; here C '  is independent of m or yg. Evidently, 
it suffices to prove (A.15) for Ko = 1. Since the sectional curvature of Z'" is 
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uniformly bounded and e,, is small enough, the surface ~r u is almost flat. 
One can think of it as just a domain in •d- 1 and of p as just the Euclidean 
metric (then pl is just the normalized Lebesgue measure). Likewise, the 
cutting surface (recall that Ko = 1 ) is almost fiat, and one can think of it as 
a hyperplane cutting the above domain. After that the problem boils down 
to a rather simple geometric consideration. We take an arbitrary segment 
Z orthogonal to the cutting hyperplane whose endpoints belob to the 
boundary of the domain. The conditional p measure on that segment is 
proportional the Lebesgue measure (length). We denote by ( ' ) z  the 
expectation with respect to that measure. The condition r'(x)< r(x) holds 
on a subsegment that is at least twice as short as Z. Then it is an elemen- 
tary calculation that (In r'(x))z < (In r(x))z + In 2. Integrating over the 
domain gives (A.15) with C ' =  In 2. 

Finally, we recall that the HLUM 7~' is supposed to be a component 
of the image of the original HLUM 7" in Lemma 4.1. Hence the normalized 
measure P2 on 7~ induced by pulling Po from ~" differs from the existing Pl 
measure on 7~. However, the Radon-Nikod~,m derivative dpz(x)/dpl(x) is 
uniformly bounded away from zero and infinity by virtue of (3.8). Thus, we 
get - ( ln r'(x))z <~ - ( I n  r(x))z + C". Ko, where the expectation is taken 
with respect to Pz, with some C" determined by C' and C o in (3.8). 
Sublemma4.1a is proven. �9 

R e m a r k  A.6. The last step in the proof of (A.15) was the integra- 
tion over the domain representing ~,~. We now suppose that the functions 
r(x) and r'(x) only differ on a relatively small subdomain. Then one can 
strengthen (A.15) as 

- (In r'(x))t <~ - ( I n  r (x ) ) t  +PC'Ko (A.16) 

where P = 2p 1 ( { x e 7 ~: r(x) :~ r '(x) } ). We now can support the bound (4.1). 
The values r~r and r~ can differ only in the 2D neighborhood 
of the boundary OT~.s. This neighborhood obviously has the relative 
p measure ~<const. ps/pv in Y~.o in the notations used in (4.1). Thus, (4.1) 
follows from (A.16). 

Remark A.7. In a similar fashion one can obtain (4.3). Here the 
key observation is that r,,(x)<2D on any moving subcomponent (no 
matter how lo.ng it is). Thus, the additional cuttings defined in Section 4 
can only alter the function r,(x) in the 2D neighborhood of the cutting 
surfaces. There is a certain freedom in positioning those surfaces and one 
can minimize the p measure of their 2D neighborhood, so that its relative 
p measure in the whole moving component will be less than, say, 100D/era. 
The bound (4.3) then follows from (A.16). 



52 Chernov 

Proof of  Sublemma 4.1B. Consider an H L U M  y~ which intersects 
some hypersurfaces of 90. Again, as in the proof  of Sublemma 4.1a, we 
think of y]' as a "fiat" ( d -  1 )-dimensional domain  cut by some hyperplanes. 
Let Jcgk and ,~k + 1 be two neighboring hyperplanes defined by the equations 
(v ,n(q))=k -~ and ( v ,n (q ) )=(k+ 1) -~ respectively. Denote  the part  
of y]' confined between ~ and ~r ~ by ?~.k" The p distance between 
and ~ + ~  in ?7.k is easily seen to be of order k -2~ (this means that  
it is between c~k -2~ and c2k -2~ with some constants c~ and c2 
independent of k or  ?'0. 

We consider an arbi trary segment Z in ?'~,k whose endpoints  belong to 
hyperplanes 9~k and 9r § 1, and which is perpendicular  to one of them, say, 
to 9r For  each x ~ Z denote r(x) the p distance of x from a?7. Note  that  
~,'[ does not intersect the singularity set So and the p distance from any 
x ~ Z  to So is of order k -2~ Hence, r(x)~< const .k  -2~ 

The map  T is a lmost  linear on y'~,~, and the image TyT, k is also an 
almost  flat ( d -  1)-dimensional compact  surface in M (provided e,, is small 
enough). The distance between T ~  and T~,Ugk + ~ in the p metric in Ty~,, is 
easily seen to be of order k -  o-  1, because the rate of expansion under T is 
propor t ional  to (v, n(q)) -1 ~ k  ~ For  every point x e Z  we denote by r'(x) 
the p distance of Tx from the boundary  3(Ty'~.k) and by r"(x) the p 
distance of Tx from T ( ~ w ~ + ~ ) .  Let Z t = { x e Z : r ' ( x ) < r " ( x ) }  and 
Z2 = Z \Z~ .  Denote  by l(-) the normalized Lebesgue measure (length) on 
Z and by ( - ) z  the expectation with respect to l(.). For  each x e Z l  we 
have r'(x)>~Aor(x) with a constant  A o >  1 due to uniform expansion on 
LUMs.  Thus, one has 

- f z  lnr '(x) dl(x)<~ -~z  t n r ( x ) d l ( x ) - l ( Z , ) l n A o  (A.17) 
I 1 

On the other hand, one has - I n  r(x) >~ const + 20 I n k  for each x e  Z and 
l{ x e Z2: r"(x) < 6 } ~< const �9 6k ~ + ~ for any 6 > 0. As a result, one obtains 

- fz2 In r"(x) dl(x) 

<~ - f72  In r(x) dl(x) - l(Z2)[(O - 1 ) I n k  - const]  - l(Z2) In l(Z2) 

(A.18) 

Since k>~no and no is supposed to be large enough, adding (A.17) and 
(A.18) gives a bound 

- f z  In r ' (x)  d/(x) ~< - I z  lnr(x) d l ( x ) - � 89  o 

The proof  of Sublemma 4.1b is then accomplished by integration over  71 
and by using (3.8) as in the proof  of Sublemma 4.1a. 
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